Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 165: 115112, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37413903

RESUMEN

Modulation of osteoclast formation could be a therapeutic target for inhibiting pathological bone destruction. The receptor activator of nuclear factor (NF)-κB ligand (RANKL) is known to be an essential factor in osteoclast differentiation and activation inducers. However, whether Protaetia brevitarsis seulensis (P. brevitarsis) larvae-a traditional animal-derived medicine used in many Asian countries-can inhibit RANKL-induced osteoclast formation and prevent ovariectomy (OVX)-induced bone loss has not been evaluated. Here, we aimed to investigate the anti-osteoporotic effects of P. brevitarsis larvae ethanol extract (PBE) in RANKL-stimulated RAW264.7 cells and OVX mice. In vitro, PBE (0.1, 0.5, 1, and 2 mg/mL) decreased RANKL­induced tartrate-resistant acid phosphatase (TRAP) activity and expression of osteoclastogenesis-associated genes and proteins. Furthermore, PBE (0.1, 0.5, 1, and 2 mg/mL) significantly inhibited the phosphorylation of p38 and NF-κB. Female C3H/HeN mice were divided into five groups (n = 5 per group), namely, sham-operated, OVX, OVX+PBEL (100 mg/kg, oral gavage), OVX+PBEH (200 mg/kg, oral gavage), and OVX+estradiol (0.03 µg/day, subcutaneous injection). High doses of PBE significantly increased femoral bone mineral density (BMD) and bone volume/tissue volume (BV/TV), whereas femoral bone surface/bone volume (BS/BV) and osteoclastogenesis-associated protein expression decreased compared to those in the OVX group. Moreover, PBE (200 mg/kg) significantly increased estradiol and procollagen type I N-terminal propeptide and decreased N-terminal telopeptide of type I collagen and C-terminal telopeptide of type I collagen compared to those in the OVX group. Our results suggest that PBE can be an effective therapeutic candidate for preventing or treating postmenopausal osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Humanos , Ratones , Animales , Femenino , Osteogénesis , Osteoporosis/tratamiento farmacológico , Larva/metabolismo , Ratones Endogámicos C3H , Osteoclastos , Enfermedades Óseas Metabólicas/metabolismo , FN-kappa B/metabolismo , Estradiol/farmacología , Ovariectomía , Ligando RANK/metabolismo
2.
Biomed Pharmacother ; 164: 114992, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301134

RESUMEN

Gamma-hydroxybutyric acid (GHB), both a metabolic precursor and product of gamma-aminobutyric acid (GABA), is a central nervous system depressant used for the treatment of narcolepsy-associated cataplexy and alcohol withdrawal. However, administration of GHB with alcohol (ethanol) is a major cause of hospitalizations related to GHB intoxication. In this study, we investigated locomotor behavior as well as metabolic and pharmacokinetic interactions following co-administration of GHB and ethanol in rats. The locomotor behavior of rats was evaluated following the intraperitoneal administration of GHB (sodium salt, 500 mg/kg) and/or ethanol (2 g/kg). Further, time-course urinary metabolic profiling of GHB and its biomarker metabolites glutamic acid, GABA, succinic acid, 2,4-dihydroxybutyric acid (OH-BA), 3,4-OH-BA, and glycolic acid as well as pharmacokinetic analysis were performed. GHB/ethanol co-administration significantly reduced locomotor activity, compared to the individual administration of GHB or ethanol. The urinary and plasma concentrations of GHB and other target compounds, except for 2,4-OH-BA, were significantly higher in the GHB/ethanol co-administration group than the group administered only GHB. The pharmacokinetic analysis results showed that the co-administration of GHB and ethanol significantly increased the half-life of GHB while the total clearance decreased. Moreover, a comparison of the metabolite-to-parent drug area under the curve ratios demonstrated that the metabolic pathways of GHB, such α- and ß-oxidation, were inhibited by ethanol. Consequently, the co-administration of GHB and ethanol aggravated the metabolism and elimination of GHB and enhanced its sedative effect. These findings will contribute to clinical interpretation of GHB intoxication.


Asunto(s)
Alcoholismo , Oxibato de Sodio , Síndrome de Abstinencia a Sustancias , Ratas , Animales , Oxibato de Sodio/metabolismo , Oxibato de Sodio/farmacología , Etanol , Ácido gamma-Aminobutírico
3.
BMB Rep ; 56(6): 353-358, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37037674

RESUMEN

In the present study, to determine the efficacy of oral supplementation of ginseng berry extracts in augmenting exercise performance and exercise-associated metabolism, male mice were given orally 200 and 400 mg/kg of body weight (BW) of GBC for nine weeks. Although there are no differences in pre-exercise blood lactate levels among (1) the control group that received neither exercise nor GBC, (2) the group that performed only twice-weekly endurance exercise, and (3) and (4) the groups that combined twice-weekly endurance exercise with either 200 or 400 mg/kg GBC, statistically significant reductions in post-exercise blood lactate levels were observed in the groups that combined twice-weekly endurance exercise with oral administration of either 200 or 400 mg/kg GBC. Histological analysis showed no muscle hypertrophy, but transcriptome analysis revealed changes in gene sets related to lactate metabolism and mitochondrial function. GBC intake increased nicotinamide adenine dinucleotide levels in the gastrocnemius, possibly enhancing the mitochondrial electron transport system and lactate metabolism. Further molecular mechanisms are needed to confirm this hypothesis. [BMB Reports 2023; 56(6): 353-358].


Asunto(s)
Panax , Condicionamiento Físico Animal , Ratones , Masculino , Animales , Frutas , Músculo Esquelético/metabolismo , Administración Oral , Lactatos/metabolismo
4.
Nat Metab ; 5(3): 398-413, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864206

RESUMEN

Whereas cholesterol is vital for cell growth, proliferation, and remodeling, dysregulation of cholesterol metabolism is associated with multiple age-related pathologies. Here we show that senescent cells accumulate cholesterol in lysosomes to maintain the senescence-associated secretory phenotype (SASP). We find that induction of cellular senescence by diverse triggers enhances cellular cholesterol metabolism. Senescence is associated with the upregulation of the cholesterol exporter ABCA1, which is rerouted to the lysosome, where it moonlights as a cholesterol importer. Lysosomal cholesterol accumulation results in the formation of cholesterol-rich microdomains on the lysosomal limiting membrane enriched with the mammalian target of rapamycin complex 1 (mTORC1) scaffolding complex, thereby sustaining mTORC1 activity to support the SASP. We further show that pharmacological modulation of lysosomal cholesterol partitioning alters senescence-associated inflammation and in vivo senescence during osteoarthritis progression in male mice. Our study reveals a potential unifying theme for the role of cholesterol in the aging process through the regulation of senescence-associated inflammation.


Asunto(s)
Inflamación , Lisosomas , Masculino , Animales , Ratones , Inflamación/metabolismo , Regulación hacia Arriba , Lisosomas/metabolismo , Senescencia Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mamíferos/metabolismo
5.
Front Endocrinol (Lausanne) ; 13: 999475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246901

RESUMEN

Particulate matter (PM) in polluted air can be exposed to the human body through inhalation, ingestion, and skin contact, accumulating in various organs throughout the body. Organ accumulation of PM is a growing health concern, particularly in the cardiovascular system. PM emissions are formed in the air by solid particles, liquid droplets, and fuel - particularly diesel - combustion. PM2.5 (size < 2.5 µm particle) is a major risk factor for approximately 200,000 premature deaths annually caused by air pollution. This study assessed the deleterious effects of diesel-derived PM2.5 exposure in HL-1 mouse cardiomyocyte cell lines. The PM2.5-induced biological changes, including ultrastructure, intracellular reactive oxygen species (ROS) generation, viability, and intracellular ATP levels, were analyzed. Moreover, we analyzed changes in transcriptomics using RNA sequencing and metabolomics using gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in PM2.5-treated HL-1 cells. Ultrastructural analysis using transmission electron microscopy revealed disruption of mitochondrial cristae structures in a PM2.5 dose-dependent manner. The elevation of ROS levels and reduction in cell viability and ATP levels were similarly observed in a PM2.5 dose-dependently. In addition, 6,005 genes were differentially expressed (fold change cut-off ± 4) from a total of 45,777 identified genes, and 20 amino acids (AAs) were differentially expressed (fold change cut-off ± 1.2) from a total of 28 identified AAs profiles. Using bioinformatic analysis with ingenuity pathway analysis (IPA) software, we found that the changes in the transcriptome and metabolome are highly related to changes in biological functions, including homeostasis of Ca2+, depolarization of mitochondria, the function of mitochondria, synthesis of ATP, and cardiomyopathy. Moreover, an integrated single omics network was constructed by combining the transcriptome and the metabolome. In silico prediction analysis with IPA predicted that upregulation of mitochondria depolarization, ROS generation, cardiomyopathy, suppression of Ca2+ homeostasis, mitochondrial function, and ATP synthesis occurred in PM2.5-treated HL-1 cells. In particular, the cardiac movement of HL-1 was significantly reduced after PM2.5 treatment. In conclusion, our results assessed the harmful effects of PM2.5 on mitochondrial function and analyzed the biological changes related to cardiac movement, which is potentially associated with cardiovascular diseases.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Aminoácidos/metabolismo , Animales , Cromatografía Liquida , Humanos , Ratones , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Material Particulado/análisis , Material Particulado/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas en Tándem
6.
Biomedicines ; 10(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35884973

RESUMEN

We performed targeted metabolomics with machine learning (ML)-based interpretation to identify metabolites that distinguish the progression of nonalcoholic fatty liver disease (NAFLD) in a cohort. Plasma metabolomics analysis was conducted in healthy control subjects (n = 25) and patients with NAFL (n = 42) and nonalcoholic steatohepatitis (NASH, n = 19) by gas chromatography-tandem mass spectrometry (MS/MS) and liquid chromatography-MS/MS as well as RNA sequencing (RNA-seq) analyses on liver tissues from patients with varying stages of NAFLD (n = 12). The resulting metabolomic data were subjected to routine statistical and ML-based analyses and multi-omics interpretation with RNA-seq data. We found 6 metabolites that were significantly altered in NAFLD among 79 detected metabolites. Random-forest and multinomial logistic regression analyses showed that eight metabolites (glutamic acid, cis-aconitic acid, aspartic acid, isocitric acid, α-ketoglutaric acid, oxaloacetic acid, myristoleic acid, and tyrosine) could distinguish the three groups. Then, the recursive partitioning and regression tree algorithm selected three metabolites (glutamic acid, isocitric acid, and aspartic acid) from these eight metabolites. With these three metabolites, we formulated an equation, the MetaNASH score that distinguished NASH with excellent performance. In addition, metabolic map construction and correlation assays integrating metabolomics data into the transcriptome datasets of the liver showed correlations between the concentration of plasma metabolites and the expression of enzymes governing metabolism and specific alterations of these correlations in NASH. Therefore, these findings will be useful for evaluation of altered metabolism in NASH and understanding of pathophysiologic implications from metabolite profiles in relation to NAFLD progression.

7.
Gastroenterology ; 163(1): 239-256, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35461826

RESUMEN

BACKGROUND & AIMS: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS: Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS: Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS: Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.


Asunto(s)
Páncreas Exocrino , Pancreatitis Crónica , Células Acinares/patología , Animales , Estrógenos/metabolismo , Humanos , Ratones , Ratones Noqueados , Páncreas/patología , Páncreas Exocrino/metabolismo , Pancreatitis Crónica/patología
8.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269890

RESUMEN

(1) Background: Progression of chronic obstructive pulmonary disease (COPD) leads to irreversible lung damage and inflammatory responses; however, biomarker discovery for monitoring of COPD progression remains challenging. (2) Methods: This study evaluated the metabolic mechanisms and potential biomarkers of COPD through the integrated analysis and receiver operating characteristic (ROC) analysis of metabolic changes in lung, plasma, and urine, and changes in morphological characteristics and pulmonary function in a model of PPE/LPS-induced COPD exacerbation. (3) Results: Metabolic changes in the lungs were evaluated as metabolic reprogramming to counteract the changes caused by the onset of COPD. In plasma, several combinations of phenylalanine, 3-methylhistidine, and polyunsaturated fatty acids have been proposed as potential biomarkers; the α-aminobutyric acid/histidine ratio has also been reported, which is a novel candidate biomarker for COPD. In urine, a combination of succinic acid, isocitric acid, and pyruvic acid has been proposed as a potential biomarker. (4) Conclusions: This study proposed potential biomarkers in plasma and urine that reflect altered lung metabolism in COPD, concurrently with the evaluation of the COPD exacerbation model induced by PPE plus LPS administration. Therefore, understanding these integrative mechanisms provides new insights into the diagnosis, treatment, and severity assessment of COPD.


Asunto(s)
Lipopolisacáridos , Enfermedad Pulmonar Obstructiva Crónica , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Ratones , Equipo de Protección Personal , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico
9.
Biomed Chromatogr ; 36(3): e5298, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34913179

RESUMEN

This is a metabolomics study for monitoring altered amino acid (AA) and organic acid (OA) metabolism of in eyes from aging an mouse model at 8 and 18 weeks and 18 months. Simultaneous metabolic profiling analysis of OAs and AAs was performed as ethoxycarbonyl/methoxime/tert-butyldimethylsilyl derivatives by gas chromatography-tandem mass spectrometry. A total of 42 metabolites-24 AAs and 18 OAs-were determined and their composition values were normalized to the corresponding mean values of 8-week-old mice as the control group. Then their normalized values were plotted as star graphs, which were distorted and readily distinguishable for each age-related group. Among the 42 metabolites, 18 AAs and 11 OAs were age dependent and significantly different (p < 0.05). Principal component analysis and partial least squares discriminant analysis showed unclear separation between 8- and 18-week-old mice but clear separation between these and 18-month-old mice. In particular, the variable importance in projection scores of 4-hydroxyproline, cis-aconitic acid, glycine, isocitric acid, leucine, pipecolic acid and lysine from partial least-squares-discriminant analysis were higher than 1.3. A heatmap for the classification and visualization of 42 metabolites showed differences in metabolite changes with aging. Altered AA and OA profiles were monitored, which may explain the metabolic disturbance of AA and OA. These findings are related to mitochondrial dysfunctions related to energy metabolism and the impaired antioxidant system in the aging eye. Therefore, the present metabolomics results of the association between physiological states and altered metabolism of AA and OA will be useful for understanding the aging eye and related diseases.


Asunto(s)
Aminoácidos , Espectrometría de Masas en Tándem , Envejecimiento , Aminoácidos/metabolismo , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Ratones
10.
Molecules ; 25(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321994

RESUMEN

Lycii Fructus is a traditional medicine used to prevent liver and kidney diseases, which commonly derives from Lycium chinense and Lycium barbarum. Here, the extracts and ethyl acetate-soluble fractions of L. chinense fruits exhibited better hepatoprotective effects than those of L. barbarum, which was likely due to differences in their composition. Therefore, GC-MS and HPLC analyses were conducted to characterize the metabolite differences between L. chinense and L. barbarum. Based on amino acid (AA) and phenolic acid (PA) profiling, 24 AAs and 9 PAs were identified in the two species. Moreover, each species exhibited unique and readily distinguishable AA and PA star graphic patterns. HPLC analysis elucidated composition differences between the ethyl acetate-soluble layers of the two compounds. Further, NMR analysis identified their chemical structures as 4-(2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl)butanoic acid and p-coumaric acid. The higher content of 4-(2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl)butanoic acid was detected in L. chinense, whereas the content of p-coumaric acid was higher in L. barbarum. Therefore, the differences in the relative contents of these two secondary metabolites in the ethyl acetate-soluble layer of Lycii Fructus could be a good marker to discriminate between L. chinense and L. barbarum.


Asunto(s)
Hepatocitos/efectos de los fármacos , Lycium/química , Lycium/clasificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Aminoácidos , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Células Hep G2 , Humanos , Hidroxibenzoatos , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/análisis , Extractos Vegetales/aislamiento & purificación , Sustancias Protectoras/análisis , Sustancias Protectoras/aislamiento & purificación
11.
Metabolites ; 10(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138187

RESUMEN

We have previously showed that defatted mealworm fermentation extract (MWF) attenuates alcoholic liver injury by regulating lipid, inflammatory, and antioxidant metabolism in chronic alcohol-fed rats. The current metabolomics study was performed to monitor biochemical events following the administration of MWF (daily for eight weeks) to a rat model of alcoholic liver injury by gas chromatography-tandem mass spectrometry (GC-MS/MS). The levels of 15 amino acids (AAs), 17 organic acids (OAs), and 19 free fatty acids (FFAs) were measured in serum. Analysis of variance (ANOVA), principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) were used to compare the levels of 51 metabolites in serum. In particular, 3-hydroxybutyric acid (3-HB), pyroglutamic acid (PG), octadecanoic acid, and docosahexaenoic acid (DHA) were evaluated as high variable importance point (VIP) scores and PCA loading scores as determined by PLS-DA and PCA, and these were significantly higher in the MWF and silymarin groups than in the EtOH group. MWF showed a protective effect from alcohol-induced liver damage by elevating hepatic ß-oxidation activity, and serum 3-HB levels were significantly higher in the MWF group than in the EtOH control group. Glycine levels were higher in the MWF group than in the EtOH group, and PG levels (related to glutathione production) were also elevated, indicating a reduction in alcohol-related oxidative stress. In addition, MWF is protected from alcohol-induced inflammation and steatosis by increasing serum DHA, palmitic, and octadecanoic acid levels as compared with the EtOH group. These results suggest that MWF might attenuate alcoholic liver disease, due to its anti-inflammatory and antioxidant effects by up-regulating hepatic ß-oxidation activity and down-regulating liver FFA uptake.

12.
Metabolomics ; 16(10): 114, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047270

RESUMEN

INTRODUCTION: Ketoacidosis of metabolic disease showed in beef cattle although body weight was increased by high-grain diets (HGDs). However, few studies have examined for health status related with metabolic disease of ketoacidosis following high-protein diet (HPD). OBJECTIVES: Metabolomic analysis was performed for the monitoring of health status associated with metabolic disease of ketoacidosis in the plasma of Hanwoo heifers following a HPD. METHODS: Hanwoo heifers of 24 months with 459 ± 42 kg weight were used under a 2 × 2 crossover design. The plasma was collected from control (n = 5) and HPD group (n = 5) on day 21 following diet adaptation for 20 days. Metabolic profiling analysis of organic acids (OAs), amino acids (AAs) and fatty acids (FAs) by gas chromatography-tandem mass spectrometry combined with star pattern analysis was performed in plasma. Levels of OAs, AAs and FAs were evaluated by Mann-Whitney test, PCA and PLS-DA. RESULTS: In HPD group, ketoacidosis as metabolic disease was monitored by elevated acetoacetic acid and 3-hydroxybutyric acid. In addition, the elevation of ketogenic AAs, reduction of medium chain FAs and OAs with energy metabolism in TCA cycle were monitored in HPD group. Star graphic pattern was characteristic and readily distinguished between control and HPD groups. In PLS-DA, two groups were separated with VIP score of top-ranked 10 FAs as important metabolites for discrimination. CONCLUSION: Elevation of ketone body including ketogenic AAs and reduced energy metabolism of FAs and OAs may useful for evaluation of health states associated with ketoacidosis from metabolic event by HPD in beef cattle.


Asunto(s)
Aminoácidos/sangre , Bovinos/sangre , Cetosis/sangre , Animales , Dieta Rica en Proteínas/efectos adversos , Dieta Rica en Proteínas/veterinaria , Ácidos Grasos/sangre , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Cetosis/diagnóstico , Metabolómica/métodos , República de Corea
13.
Nutrients ; 12(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423176

RESUMEN

This study examined the effects of defatted mealworm fermentation extract (MWF) on alcoholic liver injury in rats. The rats were fed either a Lieber-DeCarli control (Con) or alcohol liquid diet (EtOH). The alcohol-fed rats were administered MWF (50, 100, or 200 mg/kg/day) and silymarin (200 mg/kg/day) orally for eight weeks. MWF prevented alcohol-induced hepatocellular damage by decreasing their serum aspartate transaminase, alanine transaminase, and gamma-glutamyl transpeptidase levels significantly compared to the EtOH group. MWF effectively reduced the relative hepatic weight, lipid contents, and fat deposition, along with the down-regulation of transcriptional factors and genes involved in lipogenesis compared to the EtOH group. It also enhanced the antioxidant defense system by elevating the glutathione level and glutathione reductase activity. MWF attenuated the alcohol-induced inflammatory response by down-regulating hepatic inflammation-associated proteins expression, such as phosphorylated-inhibitor of nuclear factor-kappa B-alpha and tumor necrosis factor-alpha, in chronic alcohol-fed rats. Furthermore, sequencing analysis in the colonic microbiota showed that MWF tended to increase Lactobacillus johnsonii reduced by chronic alcohol consumption. These findings suggest that MWF can attenuate alcoholic liver injury by regulating the lipogenic and inflammatory pathway and antioxidant defense system, as well as by partially altering the microbial composition.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Mediadores de Inflamación/sangre , Hepatopatías Alcohólicas/tratamiento farmacológico , Extractos Vegetales/farmacología , Tenebrio , Alanina Transaminasa/sangre , Animales , Antioxidantes , Aspartato Aminotransferasas/sangre , Modelos Animales de Enfermedad , Etanol/efectos adversos , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Inflamación , Larva , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hepatopatías Alcohólicas/sangre , Masculino , Ratas , Ratas Sprague-Dawley
14.
Metabolomics ; 15(8): 111, 2019 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-31422500

RESUMEN

INTRODUCTION: Polyhexamethylene guanidine phosphate (PHMG) has been used as a disinfectant and biocide, and was known to be harmless and non-toxic. However, in 2011, PHMG used as a humidifier disinfectant was reported to be associated with lung diseases, such as, fibrosis in the toxicant studies on pulmonary fibrosis by PHMG. However, no metabolomics study has been performed in PHMG-induced mouse models of pulmonary fibrosis. OBJECTIVES: We performed a metabolomic study to understand the biochemical events that occur in bleomycin (BLM)- and PHMG-induced mouse models of pulmonary fibrosis using gas chromatography-mass spectrometry (GC-MS), LC-tandem MS, and GC-tandem MS. RESULTS: The levels of 61 metabolites of 30 amino acids, 13 organic acids, 12 fatty acids, 5 polyamines, and oxidized glutathione were determined in the pulmonary tissues of mice with BLM- and PHMG-induced pulmonary fibrosis and in normal controls. Principal component analysis and partial least squares discriminant analysis used to compare level of these 61 metabolites in pulmonary tissues. Levels of metabolites were significantly different in the BLM and PHMG groups as compared with the control group. In particular, the BLM- and PHMG-induced pulmonary fibrosis models showed elevated collagen synthesis and oxidative stress and metabolic disturbance of TCA related organic acids including fumaric acid by NADPH oxidase. In addition, polyamine metabolism showed severe alteration in the PHMG group than that of the BLM group. CONCLUSION: This result suggests PHMG will be able to induce pulmonary fibrosis by arginine metabolism and NADPH oxidase signaling.


Asunto(s)
Bleomicina/metabolismo , Modelos Animales de Enfermedad , Guanidinas/metabolismo , Metabolómica , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Animales , Bleomicina/administración & dosificación , Bleomicina/análisis , Cromatografía de Gases , Cromatografía Liquida , Guanidinas/administración & dosificación , Guanidinas/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , Espectrometría de Masas en Tándem
15.
Metabolomics ; 15(4): 58, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30941522

RESUMEN

INTRODUCTION: Recently, illegal abuse of γ-hydroxybutyric acid (GHB) has increased in drug-facilitated crimes, but the determination of GHB exposure and intoxication is difficult due to rapid metabolism of GHB. Its biochemical mechanism has not been completely investigated. And a metabolomic study by polyamine profile and pattern analyses was not performed in rat urine following intraperitoneal injection with GHB. OBJECTIVES: Urinary polyamine (PA) profiling by gas chromatography-tandem mass spectrometry was performed to monitor an altered PA according to GHB administration. METHODS: Polyamine profiling analysis by gas chromatography-mass spectrometry combined with star pattern recognition analysis was performed in this study. The multivariate statistical analysis was used to evaluate discrimination among control and GHB administration groups. RESULTS: Six polyamines were determined in control, single and multiple GHB administration groups. Star pattern showed distorted hexagonal shapes with characteristic and readily distinguishable patterns for each group. N1-Acetylspermine (p < 0.001), putrescine (p < 0.006), N1-acetylspermidine (p < 0.009), and spermine (p < 0.027) were significantly increased in single administration group but were significantly lower in the multiple administration group than in the control group. N1-Acetylspermine was the main polyamine for discrimination among control, single and multiple administration groups. Spermine showed similar levels in single and multiple administration groups. CONCLUSIONS: The polyamine metabolic pattern was monitored in GHB administration groups. N1-Acetylspermine and spermine were evaluated as potential biomarkers of GHB exposure and addiction.


Asunto(s)
Hidroxibutiratos/metabolismo , Poliaminas/análisis , Ratas Sprague-Dawley/metabolismo , Animales , Biomarcadores/orina , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidroxibutiratos/farmacología , Inyecciones Intraperitoneales , Masculino , Metabolómica/métodos , Poliaminas/orina , Ratas , Ratas Sprague-Dawley/orina
16.
Metabolomics ; 15(1): 8, 2019 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-30830418

RESUMEN

INTRODUCTION: Recently, the relationship between polyamine (PA) metabolism and asthma has been studied in severe asthmatic therapy, but systematic PA metabolism including their acetylated derivatives was not fully understood. OBJECTIVES: Profiling analysis of polyamines (PAs) was performed to understand the biochemical events and monitor altered PA metabolism in lung tissue of mice with asthma. METHODS: Polyamine profiling of lung tissue of mice with asthma was performed without derivatization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with star pattern recognition analysis. The PA levels between control and asthma groups were evaluated by multivariate analysis. RESULTS: In mouse lung tissue, seven PAs were determined by LC-MS/MS in multiple reaction monitoring (MRM) mode. Their levels were normalized to the corresponding mean levels of the control group for star pattern analysis, which showed distorted heptagonal shapes with characteristic and readily distinguishable patterns for each group. Levels of putrescine (p < 0.0034), N1-acetylputrescine (p < 0.0652), and N8-acetylspermidine (p < 0.0827) were significantly increased in asthmatic lung tissue. The separation of the two groups was evaluated using multivariate analysis. In unsupervised learning, acetylated PAs including N1-acetylspermine were the main metabolites for discrimination. In supervised learning, putrescine and N1-acetylputrescine were evaluated as important metabolites. CONCLUSIONS: The present results provide basic data for understanding polyamine metabolism in asthma and may help to improve the therapy for severe asthma patients.


Asunto(s)
Asma/metabolismo , Pulmón/metabolismo , Poliaminas/metabolismo , Acetilación , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Poliaminas/análisis , Espectrometría de Masas en Tándem/métodos
17.
Arch Pharm Res ; 42(2): 191, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30707406

RESUMEN

The authors have retracted this article [1] because after publication they became aware that the equine urine samples analysed for loxoprofen in this study were in fact equine plasma samples. Therefore the results and conclusions of this article cannot be relied upon. All authors agree to this retraction.

18.
Arch Toxicol ; 93(5): 1201-1212, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30737549

RESUMEN

Nanoparticles are a useful material in biomedicine given their unique properties and biocompatibility; however, there is increasing concern regarding the potential toxicity of nanoparticles with respect to cell metabolism. Some evidence suggests that nanoparticles can disrupt glucose and energy homeostasis. In this study, we investigated the metabolomic, transcriptomic, and integrated effects of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] on glucose metabolism in human embryonic kidney 293 (HEK293) cells. Using gas chromatography-tandem mass spectrometry, we analysed the metabolite profiles of 14 organic acids (OAs), 20 amino acids (AAs), and 13 fatty acids (FAs) after treatment with 0.1 or 1.0 µg/µl MNPs@SiO2(RITC) for 12 h. The metabolic changes were highly related to reactive oxygen species (ROS) generation and glucose metabolism. Additionally, effects on the combined metabolome and transcriptome or "metabotranscriptomic network" indicated a relationship between ROS generation and glucose metabolic dysfunction. In the experimental validation, MNPs@SiO2(RITC) treatment significantly decreased the amount of glucose in cells and was associated with a reduction in glucose uptake efficiency. Decreased glucose uptake efficiency was also related to ROS generation and impaired glucose metabolism in the metabotranscriptomic network. Our results suggest that exposure to high concentrations of MNPs@SiO2(RITC) produces maladaptive alterations in glucose metabolism and specifically glucose uptake as well as related metabolomic and transcriptomic disturbances via increased ROS generation. These findings further indicate that an integrated metabotranscriptomics approach provides useful and sensitive toxicological assessment for nanoparticles.


Asunto(s)
Glucosa/metabolismo , Nanopartículas de Magnetita/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química , Células HEK293 , Humanos , Nanopartículas de Magnetita/administración & dosificación , Metabolómica , Rodaminas/administración & dosificación , Transcriptoma
19.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30291118

RESUMEN

Here, a new medium, named intensive soil extract medium (ISEM), based on new soil extract (NSE) using 80% methanol, was used to efficiently isolate previously uncultured bacteria and new taxonomic candidates, which accounted for 49% and 55% of the total isolates examined (n = 258), respectively. The new isolates were affiliated with seven phyla (Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Bacteroidetes). The result of chemical analysis showed that NSE included more diverse components of low-molecular-weight organic substances than two conventional soil extracts made using distilled water. Cultivation of previously uncultured bacteria is expected to extend knowledge through the discovery of new phenotypic, physiological, and functional properties and even roles of unknown genes.IMPORTANCE Both metagenomics and single-cell sequencing can detect unknown genes from uncultured microbial strains in environments, and either method may find the significant potential metabolites and roles of these strains. However, such gene/genome-based techniques do not allow detailed investigations that are possible with cultures. To solve this problem, various approaches for cultivation of uncultured bacteria have been developed, but there are still difficulties in maintaining pure cultures by subculture.


Asunto(s)
Bacterias/crecimiento & desarrollo , Técnicas Bacteriológicas/métodos , Medios de Cultivo/química , Técnicas de Cultivo , Microbiología del Suelo , Suelo/química , Acidobacteria/crecimiento & desarrollo , Actinobacteria/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacteroidetes/crecimiento & desarrollo , ADN Bacteriano/aislamiento & purificación , Firmicutes/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Proteobacteria/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Verrucomicrobia/crecimiento & desarrollo
20.
Arch Pharm Res ; 41(4): 459-466, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29572683

RESUMEN

Loxoprofen is a non-steroidal anti-inflammatory drug of the 2-arylpropionic acid type, which has used to treat musculoskeletal disorders in the horse racing industry. However, it has also used illicitly to mask clinical signs of inflammation and pain in racehorses. Thus, its accurate analysis has become an important issue in horse doping laboratories. In this study, an analytical method of loxoprofen was developed as tert-butyldimethylsilyl (TBDMS) derivative by gas chromatography-mass spectrometry (GC-MS). Characteristic fragment ions of [M-15], [M-57], and [M-139] permitted the accurate and selective detection of loxoprofen. Under optimal conditions, this method showed good linearity (r ≥ 0.999) in the range of 10-500 ng/mL, repeatability (% relative standard deviation = 5.6-8.5), and accuracy (% relative error = - 0.3-0.9) with a detection limit of 1.0 ng. When applied to the analysis of loxoprofen in tablet and patch products, loxoprofen was positively identified as TBDMS derivative by GC-MS. The present method provided rapid and accurate determination of loxoprofen in patch and tablet products. Levels of loxoprofen were highest in equine urine at 0.5 and 1 h after oral administration with single dose (3 mg/kg) to three horses, and then rapidly reduced to below the lower limit of quantification at 24 h. Therefore, the present method will be useful for the pharmacokinetic study and doping tests for loxoprofen and other similar acidic drugs in horses.


Asunto(s)
Antiinflamatorios no Esteroideos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos de Organosilicio/análisis , Fenilpropionatos/análisis , Comprimidos/análisis , Parche Transdérmico , Administración Oral , Animales , Antiinflamatorios no Esteroideos/orina , Caballos , Fenilpropionatos/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...