Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pathol ; 263(1): 47-60, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38389501

RESUMEN

Liver kinase B1 (Lkb1), encoded by serine/threonine kinase (Stk11), is a serine/threonine kinase and tumor suppressor that is strongly implicated in Peutz-Jeghers syndrome (PJS). Numerous studies have shown that mesenchymal-specific Lkb1 is sufficient for the development of PJS-like polyps in mice. However, the cellular origin and components of these Lkb1-associated polyps and underlying mechanisms remain elusive. In this study, we generated tamoxifen-inducible Lkb1flox/flox;Myh11-Cre/ERT2 and Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, performed single-cell RNA sequencing (scRNA-seq) and imaging-based lineage tracing, and aimed to investigate the cellular complexity of gastrointestinal polyps associated with PJS. We found that Lkb1flox/+;Myh11-Cre/ERT2 mice developed gastrointestinal polyps starting at 9 months after tamoxifen treatment. scRNA-seq revealed aberrant stem cell-like characteristics of epithelial cells from polyp tissues of Lkb1flox/+;Myh11-Cre/ERT2 mice. The Lkb1-associated polyps were further characterized by a branching smooth muscle core, abundant extracellular matrix deposition, and high immune cell infiltration. In addition, the Spp1-Cd44 or Spp1-Itga8/Itgb1 axes were identified as important interactions among epithelial, mesenchymal, and immune compartments in Lkb1-associated polyps. These characteristics of gastrointestinal polyps were also demonstrated in another mouse model, tamoxifen-inducible Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, which developed obvious gastrointestinal polyps as early as 2-3 months after tamoxifen treatment. Our findings further confirm the critical role of mesenchymal Lkb1/Stk11 in gastrointestinal polyposis and provide novel insight into the cellular complexity of Lkb1-associated polyp biology. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Síndrome de Peutz-Jeghers , Animales , Ratones , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/patología , Proteínas Serina-Treonina Quinasas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Análisis de Secuencia de ARN , Serina , Tamoxifeno/farmacología
2.
Cell Mol Life Sci ; 81(1): 4, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38070059

RESUMEN

Obesity is characterized by chronic low-grade inflammation, which is driven by macrophage infiltration in adipose tissue and leads to elevated cytokines such as interleukin-1ß (IL-1ß) in the circulation and tissues. Previous studies demonstrate that SENP3, a redox-sensitive SUMO2/3-specific protease, is strongly implicated in the development and progression of cancer and cardiovascular diseases. However, the role of SENP3 in obesity-associated inflammation remains largely unknown. To better understand the effects of SENP3 on adipose tissue macrophage (ATM) activation and function within the context of obesity, we generated mice with myeloid-specific deletion of SENP3 (Senp3flox/flox;Lyz2-Cre mice). We found that the expression of SENP3 is dramatically increased in ATMs during high-fat diet (HFD)-induced obesity in mice. Senp3flox/flox;Lyz2-Cre mice show lower body weight gain and reduced adiposity and adipocyte size after challenged with HFD and during aging. Myeloid-specific SENP3 deletion attenuates macrophage infiltration in adipose tissue and reduces serum levels of inflammatory factors during diet and age-induced obesity. Furthermore, we found that SENP3 knockout markedly inhibits cytokine release from macrophage after lipopolysaccharide and palmitic acid treatment in vitro. Mechanistically, in cultured peritoneal macrophages, SENP3 protein level is enhanced by IL-1ß, in parallel with the upregulation of Yes-associated protein 1 (YAP1). Moreover, we demonstrated that SENP3 modulates de-SUMO modification of YAP1 and SENP3 deletion abolishes the upregulation of YAP1 induced by IL-1ß. Most importantly, SENP3 deficiency reduces YAP1 protein level in adipose tissue during obesity. Our results highlight the important role of SENP3 in ATM inflammation and diet and age-induced obesity.


Asunto(s)
Resistencia a la Insulina , Sumoilación , Animales , Ratones , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Citocinas/metabolismo , Factores de Transcripción/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo
3.
Eur J Pharmacol ; 947: 175451, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36502962

RESUMEN

BACKGROUND: Jujuboside A (JuA), as a main effective component of Jujubogenin, has long been known as a sedative-hypnotic drug. The aim of the current study was to investigate the potential effect of JuA on sepsis-induced cardiomyopathy (SIC) induced by lipopolysaccharide (LPS). METHOD: Wide type C57BL/6 mice and neonatal rat cardiomyocytes (NRCMs) were exposed to LPS to establish myocardial toxicity models. Cardiac function of septic mice was detected by echocardiography. Moreover, the survival rate was calculated for 7 days. ELISA assays were used to analyze inflammatory factors in serum. Furthermore, western blotting, flow cytometry and TUNEL staining were performed to assess cell apoptosis and transmission electron microscopy detect the number of autophagosomes in myocardium. Finally, the expression of proteins related to pyroptosis, autophagy and oxidative stress was analyzed by western blotting and immunohistochemistry staining. RESULTS: Results showed that JuA pretreatment significantly improved the survival rate and cardiac function, and suppressed systemic inflammatory response in septic mice. Further study revealed that JuA could decrease cell apoptosis and pyroptosis; instead, it strengthened autophagy in SIC. Moreover, JuA also significantly decreased oxidative stress and nitrodative stress, as evidenced by suppressing the superoxide production and downregulating iNOS and gp91 expression in vivo. In addition, the autophagy inhibitor 3-MA significantly abolished the effect of JuA on autophagic activity in SIC. CONCLUSION: In conclusion, the findings indicated that JuA attenuates cardiac function via blocking inflammasome-mediated apoptosis and pyroptosis, at the same time by enhancing autophagy in SIC, heralding JuA as a potential therapy for sepsis.


Asunto(s)
Cardiomiopatías , Sepsis , Ratas , Ratones , Animales , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología , Autofagia , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
4.
Front Cardiovasc Med ; 9: 922811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035954

RESUMEN

Background: The effect of primary site on cardiovascular mortality (CVM) post-radiotherapy (RT) in patients with limited-stage small cell lung cancer (LS-SCLC) remains unclear. Methods: We screened the Surveillance, Epidemiology, and End Results (SEER) database between 1988 and 2013. We used cumulative incidence function (CIF) curves to compare CVM incidences, and performed Cox proportional hazards and Fine-Gray competing risk analyses to identify independent risk factors of CVM. Propensity score matching (PSM) analysis was conducted. Results: Among enrolled 4,824 patients (median age 57 years old, 49.2% were male), CVM accounts for 10.0% of all deaths after 5 years since cancer diagnosis. Hazard ratios (HRs) for CVM were 1.97 (95% CI: 1.23-3.16, P = 0.005) for main bronchus (MB) patients, 1.65 (95% CI: 1.04-2.63, P = 0.034) for lower lobe (LL) patients and 1.01 (95% CI: 0.40-2.59, P = 0.977) for middle lobe (ML) patients compared to upper lobe (UL) patients. CIF curves showed that the cumulative CVM incidence was greater in the re-categorized MB/LL group compared to UL/ML group both before PSM (P = 0.005) and after PSM (P = 0.012). Multivariate regression models indicated that MB/LL was independently associated with an increased CVM risk, before PSM (HRCox: 1.79, 95% CI: 1.23-2.61, P = 0.002; HRFine-Gray: 1.71, 95% CI: 1.18-2.48, P = 0.005) and after PSM (HRCox: 1.88, 95% CI: 1.20-2.95, P = 0.006; HRFine-Gray: 1.79, 95% CI: 1.15-2.79, P = 0.010). Conclusions: MB/LL as the primary site is independently associated with an increased CVM risk post-RT in patients with LS-SCLC.

5.
Cardiovasc Drugs Ther ; 36(6): 1061-1073, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34410548

RESUMEN

PURPOSE: Macrophage apoptosis coupled with a defective phagocytic clearance of the apoptotic cells promotes plaque necrosis in advanced atherosclerosis, which causes acute atherothrombotic vascular disease. Nonsteroidal anti-inflammatory drug sulindac derivative K-80003 treatment was previously reported to dramatically attenuate atherosclerotic plaque progression and destabilization. However, the underlying mechanisms are not fully understood. This study aimed to determine the role of K-80003 on macrophage apoptosis and elucidate the underlying mechanism. METHODS: The mouse model of vulnerable carotid plaque in ApoE-/- mice was developed in vivo. Consequently, mice were randomly grouped into two study groups: the control group and the K-80003 group (30 mg/kg/day). Samples of carotid arteries were collected to determine atherosclerotic necrotic core area, cellular apoptosis, and oxidative stress. The effects of K-80003 on RAW264.7 macrophage apoptosis, oxidative stress, and autophagic flux were also examined in vitro. RESULTS: K-80003 significantly suppressed necrotic core formation and inhibited cellular apoptosis of vulnerable plaques. K-80003 can also inhibit 7-ketocholesterol-induced macrophage apoptosis in vitro. Furthermore, K-80003 inhibited intraplaque cellular apoptosis mainly through the suppression of oxidative stress, which is a key cause of advanced lesional macrophage apoptosis. Mechanistically, K-80003 prevented 7-ketocholesterol-induced impairment of autophagic flux in macrophages, evidenced by the decreased LC3II and SQSTM1/p62 expression, GFP-RFP-LC3 cancellation upon K-80003 treatment. CONCLUSION: Inhibition of macrophage apoptosis and necrotic core formation by autophagy-mediated reduction of oxidative stress is one mechanism of the suppression of plaque progression and destabilization by K-80003.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Apoptosis , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Necrosis/metabolismo , Placa Aterosclerótica/metabolismo , Sulindac/metabolismo , Sulindac/farmacología
6.
J Mol Cell Cardiol ; 159: 91-104, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34147480

RESUMEN

AIMS: Pathological cardiac hypertrophy induced by activation of the renin-angiotensin-aldosterone system (RAAS) is one of the leading causes of heart failure. However, in current clinical practice, the strategy for targeting the RAAS is not sufficient to reverse hypertrophy. Here, we investigated the effect of prostaglandin E1 (PGE1) on angiotensin II (AngII)-induced cardiac hypertrophy and potential molecular mechanisms underlying the effect. METHODS AND RESULTS: Adult male C57 mice were continuously infused with AngII or saline and treated daily with PGE1 or vehicle for two weeks. Neonatal rat cardiomyocytes were cultured to detect AngII-induced hypertrophic responses. We found that PGE1 ameliorated AngII-induced cardiac hypertrophy both in vivo and in vitro. The RNA sequencing (RNA-seq) and expression pattern analysis results suggest that Netrin-1 (Ntn1) is the specific target gene of PGE1. The protective effect of PGE1 was eliminated after knockdown of Ntn1. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the PGE1-mediated signaling pathway changes are associated with the mitogen-activated protein kinase (MAPK) pathway. PGE1 suppressed AngII-induced activation of the MAPK signaling pathway, and such an effect was attenuated by Ntn1 knockdown. Blockade of MAPK signaling rescued the phenotype of cardiomyocytes caused by Ntn1 knockdown, indicating that MAPK signaling may act as the downstream effector of Ntn1. Furthermore, inhibition of the E-prostanoid (EP) 3 receptor, as opposed to the EP1, EP2, or EP4 receptor, in cardiomyocytes reversed the effect of PGE1, and activation of EP3 by sulprostone, a specific agonist, mimicked the effect of PGE1. CONCLUSION: In conclusion, PGE1 ameliorates AngII-induced cardiac hypertrophy through activation of the EP3 receptor and upregulation of Ntn1, which inhibits the downstream MAPK signaling pathway. Thus, targeting EP3, as well as the Ntn1-MAPK axis, may represent a novel approach for treating pathological cardiac hypertrophy.


Asunto(s)
Alprostadil/farmacología , Angiotensina II/farmacología , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Netrina-1/genética , Subtipo EP3 de Receptores de Prostaglandina E/genética , Regulación hacia Arriba/efectos de los fármacos , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Am J Transl Res ; 12(8): 4511-4521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913524

RESUMEN

Moringa oleifera (MOI), an edible plant in the family of Moringaceae, has been used as food and medicine in many Asian countries. MOI exhibits neuroprotective, antioxidant, anti-inflammatory, and hypoglycemic functions. However, whether MOI seeds play a significant role in ischemic heart diseases has not been investigated. In this study, we found MOI seeds could improve the 28-day survival rate and the cardiac functions of myocardial infarction (MI) mice, with significantly increased ejection fraction and fractional shortening by day 28 post-MI. Correspondingly, the infarctional areas of heart were markedly decreased. Mechanistically, MOI seeds inhibited MI-induced apoptosis and repressed the degree of cardiac fibrosis. Further mechanistic studies indicated cardioprotective the effects of MOI seeds mainly via the suppression of oxidative and nitrosative stress. Taken together, our work suggested a beneficial role of MOI seeds in MI-induced myocardial damage and cardiac remodeling by suppressing cardiomyocyte apoptosis and reducing collagen production, highlighting a promising therapeutic strategy for MI.

8.
Oxid Med Cell Longev ; 2020: 1605456, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714485

RESUMEN

Survival and outcome of cardiac arrest (CA) are dismal despite improvements in cardiopulmonary resuscitation (CPR). Salvianolic acid B (Sal B), extracted from Salvia miltiorrhiza, has been investigated for its cardioprotective properties in cardiac remodeling and ischemic heart disease, but less is known about its role in CA. The aim of this study was to learn whether Sal B improves cardiac and neurologic outcomes after CA/CPR in mice. Female C57BL/6 mice were subjected to eight minutes of CA induced by an intravenous injection of potassium chloride (KCl), followed by CPR. After 30 seconds of CPR, mice were blindly randomized to receive either Sal B (20 mg/kg) or vehicle (normal saline) intravenously. Hemodynamic variables and indices of left ventricular function were determined before CA and within three hours after CPR, the early postresuscitation period. Sal B administration resulted in a remarkable decrease in the time required for the return of spontaneous circulation (ROSC) in animals that successfully resuscitated compared to the vehicle-treated mice. Myocardial performance, including cardiac output and left ventricular systolic (dp/dtmax) and diastolic (dp/dtmin) function, was clearly ameliorated within three hours of ROSC in the Sal B-treated mice. Moreover, Sal B inhibited CA/CPR-induced cardiomyocyte apoptosis and preserved mitochondrial morphology and function. Mechanistically, Sal B dramatically promoted Nrf2 nuclear translocation through the downregulation of Keap1, which resulted in the expression of antioxidant enzymes, including HO-1 and NQO1, thereby counteracted the oxidative damage in response to CA/CPR. The aforementioned antiapoptotic and antioxidant effects of Sal B were impaired in the setting of gene silencing of Nrf2 with siRNA in vitro model. These improvements were associated with better neurological function and increased survival rate (75% vs. 40%, p < 0.05) up to 72 hours postresuscitation. Our findings suggest that the administration of Sal B improved cardiac function and neurological outcomes in a murine model of CA via activating the Nrf2 antioxidant signaling pathway, which may represent a novel therapeutic strategy for the treatment of CA.


Asunto(s)
Benzofuranos/uso terapéutico , Paro Cardíaco/tratamiento farmacológico , Salvia miltiorrhiza/química , Animales , Benzofuranos/farmacología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Femenino , Paro Cardíaco/mortalidad , Humanos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Análisis de Supervivencia , Transfección
9.
J Pineal Res ; 67(2): e12579, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30958896

RESUMEN

Exercise-induced physiological hypertrophy provides protection against cardiovascular disease, whereas disease-induced pathological hypertrophy leads to heart failure. Emerging evidence suggests pleiotropic roles of melatonin in cardiac disease; however, the effects of melatonin on physiological vs pathological cardiac hypertrophy remain unknown. Using swimming-induced physiological hypertrophy and pressure overload-induced pathological hypertrophy models, we found that melatonin treatment significantly improved pathological hypertrophic responses accompanied by alleviated oxidative stress in myocardium but did not affect physiological cardiac hypertrophy and oxidative stress levels. As an important mediator of melatonin, the retinoid-related orphan nuclear receptor-α (RORα) was significantly decreased in human and murine pathological hypertrophic cardiomyocytes, but not in swimming-induced physiological hypertrophic murine hearts. In vivo and in vitro loss-of-function experiments indicated that RORα deficiency significantly aggravated pathological cardiac hypertrophy, and notably weakened the anti-hypertrophic effects of melatonin. Mechanistically, RORα mediated the cardioprotection of melatonin in pathological hypertrophy mainly by transactivation of manganese-dependent superoxide dismutase (MnSOD) via binding to the RORα response element located in the promoter region of the MnSOD gene. Furthermore, MnSOD overexpression reversed the pro-hypertrophic effects of RORα deficiency, while MnSOD silencing abolished the anti-hypertrophic effects of RORα overexpression in pathological cardiac hypertrophy. Collectively, our findings provide the first evidence that melatonin exerts an anti-hypertrophic effect on pathological but not physiological cardiac hypertrophy via alleviating oxidative stress through transactivation of the antioxidant enzyme MnSOD in a RORα-dependent manner.


Asunto(s)
Cardiomegalia/metabolismo , Melatonina/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Modelos Animales de Enfermedad , Ratones , Ratones Mutantes , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Superóxido Dismutasa/genética
10.
Exp Cell Res ; 371(2): 301-310, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30098335

RESUMEN

Myocardial ischemia/reperfusion (MI/R) injury induces excessive cellular apoptosis and contributes significantly to final infarct size. We previously demonstrated that a nuclear receptor, Farnesoid X receptor (FXR), plays a crucial role in mediating myocardial apoptosis. The FXR functions are regulated by post translational modifications (PTM). However, whether the proapoptotic effect of FXR in MI/R injury is regulated by PTM remains unclear. Here, we aimed to study the effect of SUMOylation, a PTM involved in the pathogenesis of MI/R injury per se, on the proapoptotic effect of FXR in MI/R injury. We observed that FXR could be SUMOylated in heart tissues, and FXR SUMOylation levels were downregulated in ischemia reperfused myocardium. By overexpression of SUMOylation-defective FXR mutant, it was demonstrated that decreased SUMOylation augmented the detrimental effect of FXR, via activation of mitochondrial apoptosis pathway and autophagy dysfunction in MI/R injury. Further mechanistic studies suggested that decreased SUMOylation levels increased the transcription activity of FXR, and the subsequently upregulated FXR target gene SHP mediated the proapoptotic effects of FXR. Taken together, we provided the first evidence that the cardiac effects of FXR could be regulated by SUMOylation, and that manipulating FXR SUMOylation levels may hold therapeutic promise for constraining MI/R injury.


Asunto(s)
Apoptosis/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Autofagia , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Sumoilación , Transcripción Genética
11.
J Genet Genomics ; 45(3): 125-135, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29576508

RESUMEN

Sentrin-specific protease 3 (SENP3), a member of the desumoylating enzyme family, is known as a redox sensor and could regulate multiple cellular signaling pathways. However, its implication in myocardial ischemia reperfusion (MIR) injury is unclear. Here, we observed that SENP3 was expressed and upregulated in the mouse heart depending on reactive oxygen species (ROS) production in response to MIR injury. By utilizing siRNA-mediated cardiac specific gene silencing, SENP3 knockdown was demonstrated to significantly reduce MIR-induced infarct size and improve cardiac function. Mechanistic studies indicated that SENP3 silencing ameliorated myocardial apoptosis mainly via suppression of endoplasmic reticulum (ER) stress and mitochondrial-mediated apoptosis pathways. By contrast, adenovirus-mediated cardiac SENP3 overexpression significantly exaggerated MIR injury. Further molecular analysis revealed that SENP3 promoted mitochondrial translocation of dynamin-related protein 1 (Drp1) in reperfused myocardium. In addition, mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, significantly attenuated the exaggerated mitochondrial abnormality and cardiac injury by SENP3 overexpression after MIR injury. Taken together, we provide the first direct evidence that SENP3 upregulation pivotally contributes to MIR injury in a Drp1-dependent manner, and suggest that SENP3 suppression may hold therapeutic promise for constraining MIR injury.


Asunto(s)
Cisteína Endopeptidasas/genética , Dinaminas/genética , Daño por Reperfusión Miocárdica/genética , Péptido Hidrolasas/genética , Animales , Apoptosis/genética , Dinaminas/antagonistas & inhibidores , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Quinazolinonas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Biochem Biophys Res Commun ; 488(3): 489-495, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28511797

RESUMEN

Liver X receptor α (LXRα) is an endogenous protective receptor against ischemic heart diseases. However, whether LXRα regulated glucose metabolism in ischemic heart diseases has not been investigated. In this study we investigated the involvement of LXRα on glucose metabolism in cardiac remodeling after myocardial infarction (MI). MI was induced in mice by permanent ligation of the left anterior descending coronary artery (LCA). Genetic LXRα deletion significantly worsened cardiac remodeling and impaired cardiac function at 4 weeks after MI. Cardiac 18F-fluorodeoxyglucose (FDG) uptake by positron emission tomography (PET) demonstrated that the FDG standardized uptake value (SUV) was significantly lower in LXRα-/- mice as compared to WT mice. Mechanistically, GLUT1/4 and AMPK phosphorylation were significantly downregulated while CD36 expression was markedly upregulated in LXRα-/- mice. This study demonstrated that deficiency of LXRα decreased glucose uptake after MI, resulting in a metabolic shift that suppressed glucose metabolism, which was in association with adverse cardiac remodeling.


Asunto(s)
Glucosa/metabolismo , Receptores X del Hígado/deficiencia , Receptores X del Hígado/metabolismo , Infarto del Miocardio/metabolismo , Remodelación Ventricular , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
J Pineal Res ; 62(3)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27862268

RESUMEN

Diabetic cardiomyopathy is a major complication that significantly contributes to morbidity and mortality in diabetics with few therapies. Moreover, antidiabetic drugs reported inconsistent or even adverse cardiovascular effects, suggesting that it is important to exploit novel therapeutic targets against diabetic cardiomyopathy. Here, we observed that the nuclear melatonin receptor, the retinoic acid-related orphan receptor-α (RORα), was downregulated in diabetic hearts. By utilizing a mouse line with RORα disruption, we demonstrated that RORα deficiency led to significantly augmented diastolic dysfunction and cardiac remodeling induced by diabetes. Microscopic and molecular analyses further indicated that the detrimental effects of RORα deficiency were associated with aggravated myocardial apoptosis, autophagy dysfunction, and oxidative stress by disrupting antioxidant gene expression. By contrast, restoration of cardiac RORα levels in transgenic mice significantly improved cardiac functional and structural parameters at 8 weeks after diabetes induction. Consistent with genetic manipulation, pharmacological activation of RORα by melatonin and SR1078 (a synthetic agonist) showed beneficial effects against diabetic cardiomyopathy, while the RORα inhibitor SR3335 significantly exacerbated cardiac impairments in diabetic mice. Collectively, these findings suggest that cardiac-targeted manipulation of nuclear melatonin receptor RORα may hold promise for delaying diabetic cardiomyopathy development.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Miocardio/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Melatonina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Benzamidas/farmacología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Ratones , Ratones Mutantes , Miocardio/patología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Receptores de Melatonina/genética , Sulfonamidas/farmacología , Tiofenos/farmacología
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 1991-2000, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27825849

RESUMEN

Retinoid-related orphan receptor α (RORα), a member of the metabolic nuclear receptor superfamily, plays a vital regulatory role in circadian rhythm and metabolism. Here, we investigated the role of RORα in high-fat diet (HFD)-induced cardiac impairments and the underlying mechanisms involved. RORα-deficient stagger mice (sg/sg) and wild type (WT) littermates were fed with either standard diet or HFD. At 20weeks after HFD treatment, RORα deficiency resulted in significantly decreased body weight gain, improved dyslipidemia and ameliorated insulin resistance (evaluated by blood biochemical and glucose/insulin tolerance tests) compared with WT control. However, compared with HFD-treated WT mice, HFD-treated sg/sg mice exhibited significantly augmented myocardial hypertrophy, cardiac fibrosis (wheat germ agglutinin, masson trichrome and sirius red staining) and cardiac dysfunction (echocardiography and hemodynamics). Mechanistically, RORα deficiency impaired mitochondrial biogenesis and function. Additionally, RORα deficiency resulted in inhibition of the AMPK-PGC1α signaling pathway. In contrast, cardiomyocyte-specific RORα overexpression ameliorated myocardial hypertrophy, fibrosis and dysfunction by restoring AMPK-PGC1α signaling, and subsequently normalizing mitochondrial biogenesis. These findings demonstrated for the first time that nuclear receptor RORα deficiency aggravated HFD-induced myocardial dysfunction at least in part by impairing mitochondrial biogenesis in association with disrupting AMPK-PGC1α signaling. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren and Megan Yingmei Zhang.


Asunto(s)
Grasas de la Dieta/efectos adversos , Cardiopatías , Miocardio/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/deficiencia , Biogénesis de Organelos , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Grasas de la Dieta/farmacología , Cardiopatías/inducido químicamente , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Resistencia a la Insulina , Ratones , Ratones Mutantes , Miocardio/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
15.
Hypertension ; 67(6): 1237-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27045030

RESUMEN

Dysregulation of the ubiquitin proteasome system components ubiquitin ligases and proteasome plays an important role in the pathogenesis of cardiac hypertrophy. However, little is known about the role of another ubiquitin proteasome system component, the deubiquitinating enzymes, in cardiac hypertrophy. Here, we revealed a crucial role of ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme prominently expressed in the heart, in attenuating pathological cardiac hypertrophy and dysfunction. USP4 levels were consistently decreased in human failing hearts and in murine hypertrophied hearts. Adenovirus-mediated gain- and loss-of-function approaches indicated that deficiency of endogenous USP4 promoted myocyte hypertrophy induced by angiotensin II in vitro, whereas restoration of USP4 significantly attenuated the prohypertrophic effect of angiotensin II. To corroborate the role of USP4 in vivo, we generated USP4 global knockout mice and mice with cardiac-specific overexpression of USP4. Consistent with the in vitro study, USP4 depletion exacerbated the hypertrophic phenotype and cardiac dysfunction in mice subjected to pressure overload, whereas USP4 transgenic mice presented ameliorated pathological cardiac hypertrophy compared with their control littermates. Molecular analysis revealed that USP4 deficiency augmented the activation of the transforming growth factor ß-activated kinase 1 (TAK1)-(JNK1/2)/P38 signaling in response to hypertrophic stress, and blockage of TAK1 activation abolished the pathological effects of USP4 deficiency in vivo. These findings provide the first evidence for the involvement of USP4 in cardiac hypertrophy, and shed light on the therapeutic potential of targeting USP4 in the treatment of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Proteasas Ubiquitina-Específicas/metabolismo , Remodelación Ventricular/fisiología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Sensibilidad y Especificidad , Transducción de Señal , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...