Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
J Asian Nat Prod Res ; : 1-7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975972

RESUMEN

A chemical investigation on the roots of Aconitum nagarum afforded two undescribed C19-diterpenoid alkaloids nagarumines D and E (1 and 2). The structures of the new compounds were elucidated by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, as well as HR-ESI-MS. The two isolated alkaloids were tested in vitro for cytotoxic activity against five gastric tumor cell lines. Consequently, compound 2 exhibited some cytotoxicities against several human cancer cell lines with IC50 value less than 20.0 µM.

2.
J Asian Nat Prod Res ; 26(10): 1139-1146, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38934326

RESUMEN

A phytochemical investigation on the 80% EtOH extract of the leaves of Paederia scandens (Lour.) Merr. resulted into the isolation of three undescribed iridoid glycosides, 10-O-trans-p-coumaroyl-(4R,6R)-3,4-dihydro-3α-methylthiopaederoside (1), 10-O-trans-feruloyl-(4S,6R)-3,4-dihydro-2'-O-3α-paederoside (2), and 10-O-trans-caffeoyl-paederosidic acid ethyl ester (3). The structures of the new compounds were elucidated by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, as well as high resolution mass spectrometry. The isolated compounds were tested in vitro for cytotoxic activity against five endocrine tumor cell lines. As a result, compound 1 exhibited some cytotoxicities against all the tested tumor cell lines with IC50 value less than 20.0 µM.


Asunto(s)
Antineoplásicos Fitogénicos , Ensayos de Selección de Medicamentos Antitumorales , Glicósidos Iridoides , Hojas de la Planta , Hojas de la Planta/química , Humanos , Estructura Molecular , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Glicósidos Iridoides/farmacología , Glicósidos Iridoides/química , Glicósidos Iridoides/aislamiento & purificación , Línea Celular Tumoral
3.
J Am Chem Soc ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38859580

RESUMEN

In the realm of organic synthesis, the catalytic and stereoselective formation of C-glycosidic bonds is a pivotal process, bridging carbohydrates with aglycones. However, the inherent chirality of the saccharide scaffold often has a substantial impact on the stereoinduction imposed by a chiral ligand. In this study, we have established an unprecedented zirconaaziridine-mediated asymmetric nickel catalysis, enabling the diastereoselective coupling of bench-stable glycosyl phosphates with a range of (hetero)aromatic and glycal iodides as feasible coupling electrophiles. Our developed method showcases a broad scope and a high tolerance for various functional groups. More importantly, precise stereocontrol toward both anomeric configurations of forming C(sp2)-glycosides can be realized by simply utilizing the popular chiral bioxazoline (biOx) ligands in this reductive Ni catalysis. Regarding the operating mechanism, both experimental and computational studies support the occurrence of a redox transmetalation process, leading to the formation of a transient, bimetallic Ni-Zr species that acts as a potent and efficient single-electron reductant in the catalytic process.

4.
Biochem Pharmacol ; : 116325, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815629

RESUMEN

The melanocortin-4 receptor (MC4R), a G protein-coupled receptor, is critically involved in regulating energy homeostasis as well as modulation of reproduction and sexual function. Two peptide antagonists (SHU9119 and MBP10) were derived from the endogenous agonist α-melanocyte stimulating hormone. But their pharmacology at human MC4R is not fully understood. Herein, we performed detailed pharmacological studies of SHU9119 and MBP10 on wild-type (WT) and six naturally occurring constitutively active MC4Rs. Both ligands had no or negligible agonist activity in Gαs-cAMP signaling on WT MC4R, but stimulated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation on WT and mutant MC4Rs. Mechanistic studies revealed that SHU9119 and MBP10 stimulated ERK1/2 signaling of MC4R by different mechanisms, with SHU9119-stimulated ERK1/2 signaling mediated by phosphatidylinositol 3-kinase (PI3K) and MBP10-initiated ERK1/2 activation through PI3K and ß-arrestin. In summary, our studies demonstrated that SHU9119 and MBP10 were biased ligands for MC4R, preferentially activating ERK1/2 signaling through different mechanisms. SHU9119 acted as a biased ligand and MBP10 behaved as a biased allosteric modulator.

5.
J Transl Med ; 22(1): 514, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812032

RESUMEN

The aging process of the kidneys is accompanied with several structural diseases. Abnormal fiber formation disrupts the balance of kidney structure and function, causing to end-stage renal disease and subsequent renal failure. Despite this, the precise mechanism underlying renal damage in aging remains elusive. In this study, ABI3BP gene knockout mice were used to investigate the role of ABI3BP in renal aging induced by irradiation. The results revealed a significant increase in ABI3BP expression in HK2 cells and kidney tissue of aging mice, with ABI3BP gene knockout demonstrating a mitigating effect on radiation-induced cell aging. Furthermore, the study observed a marked decrease in Klotho levels and an increase in ferroptosis in renal tissue and HK2 cells following irradiation. Notably, ABI3BP gene knockout not only elevated Klotho expression but also reduced ferroptosis levels. A significant negative correlation between ABI3BP and Klotho was established. Further experiments demonstrated that Klotho knockdown alleviated the aging inhibition caused by ABI3BP downregulation. This study identifies the upregulation of ABI3BP in aged renal tubular epithelial cells, indicating a role in promoting ferroptosis and inducing renal aging by inhibiting Klotho expression.


Asunto(s)
Envejecimiento , Ferroptosis , Riñón , Proteínas Klotho , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular , Glucuronidasa/metabolismo , Riñón/metabolismo , Riñón/patología , Proteínas Klotho/metabolismo , Ratones Endogámicos C57BL
6.
Am J Clin Exp Immunol ; 13(1): 53-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496358

RESUMEN

This article reviews the role of high-density lipoprotein cholesterol (HDL-C) in the elderly population, questioning the established view that advocates the ubiquitous health benefits of HDL cholesterol. High levels of HDL-C have been found to be associated with an increased risk of debilitating fractures, dementia, and cardiovascular disease, predominantly affecting older men, through the use of large population-based studies such as the ASPREE trial and the UK Biobank. Possible mechanisms are closely linked to cholesterol crystallization and altered HDL particle function. These findings call for a refinement of the understanding of high-density lipoprotein cholesterol (HDL-C), which implies adjustments to clinical guidelines and risk assessment strategies in older populations.

7.
Angew Chem Int Ed Engl ; 63(11): e202319850, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38273811

RESUMEN

In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.

8.
Nat Chem ; 16(3): 466-475, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38057367

RESUMEN

Although α-chiral C(sp3)-S bonds are of enormous importance in organic synthesis and related areas, the transition-metal-catalysed enantioselective C(sp3)-S bond construction still represents an underdeveloped domain probably due to the difficult heterolytic metal-sulfur bond cleavage and notorious catalyst-poisoning capability of sulfur nucleophiles. Here we demonstrate the use of chiral tridentate anionic ligands in combination with Cu(I) catalysts to enable a biomimetic enantioconvergent radical C(sp3)-S cross-coupling reaction of both racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles. This protocol not only exhibits a broad substrate scope with high enantioselectivity but also provides universal access to a range of useful α-chiral alkyl organosulfur compounds with different sulfur oxidation states, thus providing a complementary approach to known asymmetric C(sp3)-S bond formation methods. Mechanistic results support a biomimetic radical homolytic substitution pathway for the critical C(sp3)-S bond formation step.

9.
JACS Au ; 3(12): 3366-3373, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38155656

RESUMEN

The rate constants kH (kD) have been determined at 27 °C for H· (D·) transfer from CpCr(CO)3H(D) to the C=C bonds of various enamides. This process leads to the formation of α-amino radicals. Vinyl enamides with N-alkyl and N-phenyl substituents have proven to be good H· acceptors, with rate constants close to those of styrene and methyl methacrylate. A methyl substituent on the incipient radical site decreases kH by a factor of 4; a methyl substituent on the carbon that will receive the H· decreases kH by a factor of 380. The measured kH values indicate that these α-amino radicals can be used for the cyclization of enamides to pyrrolidines. A vanadium hydride, HV(CO)4(dppe), has proven more effective at the cyclization of enamides than Cr or Co hydrides-presumably because the weakness of the V-H bond leads to faster H· transfer. The use of the vanadium hydride is operationally simple, employs mild reaction conditions, and has a broad substrate scope. Calculations have confirmed that H· transfer is the slowest step in these cyclization reactions.

10.
Diabetes Metab Syndr Obes ; 16: 3235-3247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37872972

RESUMEN

It is well documented that diabetes mellitus (DM) is strongly associated with cognitive decline and structural damage to the brain. Cognitive deficits appear early in DM and continue to worsen as the disease progresses, possibly due to different underlying mechanisms. Normal iron metabolism is necessary to maintain normal physiological functions of the brain, but iron deposition is one of the causes of some neurodegenerative diseases. Increasing evidence shows that iron overload not only increases the risk of DM, but also contributes to the development of cognitive impairment. The current review highlights the role of iron overload in diabetic cognitive impairment (DCI), including the specific location and regulation mechanism of iron deposition in the diabetic brain, the factors that trigger iron deposition, and the consequences of iron deposition. Finally, we also discuss possible therapies to improve DCI and brain iron deposition.

11.
Biomolecules ; 13(8)2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37627313

RESUMEN

The melanocortin-4 receptor (MC4R) is essential for the modulation of energy balance and reproduction in both fish and mammals. Rainbow trout (Oncorhynchus mykiss) has been extensively studied in various fields and provides a unique opportunity to investigate divergent physiological roles of paralogues. Herein we identified four trout mc4r (mc4ra1, mc4ra2, mc4rb1, and mc4rb2) genes. Four trout Mc4rs (omMc4rs) were homologous to those of teleost and mammalian MC4Rs. Multiple sequence alignments, a phylogenetic tree, chromosomal synteny analyses, and pharmacological studies showed that trout mc4r genes may have undergone different evolutionary processes. All four trout Mc4rs bound to two peptide agonists and elevated intracellular cAMP levels dose-dependently. High basal cAMP levels were observed at two omMc4rs, which were decreased by Agouti-related peptide. Only omMc4rb2 was constitutively active in the ERK1/2 signaling pathway. Ipsen 5i, ML00253764, and MCL0020 were biased allosteric modulators of omMc4rb1 with selective activation upon ERK1/2 signaling. ML00253764 behaved as an allosteric agonist in Gs-cAMP signaling of omMc4rb2. This study will lay the foundation for future physiological studies of various mc4r paralogs and reveal the evolution of MC4R in vertebrates.


Asunto(s)
Oncorhynchus mykiss , Animales , Receptor de Melanocortina Tipo 4/genética , Filogenia , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Mamíferos
12.
iScience ; 26(8): 107478, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37583550

RESUMEN

Circular RNA (circRNA) plays an important role in the diagnosis, treatment, and prognosis of human diseases. The discovery of potential circRNA-miRNA interactions (CMI) is of guiding significance for subsequent biological experiments. Limited by the small amount of experimentally supported data and high randomness, existing models are difficult to accomplish the CMI prediction task based on real cases. In this paper, we propose KS-CMI, a novel method for effectively accomplishing CMI prediction in real cases. KS-CMI enriches the 'behavior relationships' of molecules by constructing circRNA-miRNA-cancer (CMCI) networks and extracts the behavior relationship attribute of molecules based on balance theory. Next, the denoising autoencoder (DAE) is used to enhance the feature representation of molecules. Finally, the CatBoost classifier was used for prediction. KS-CMI achieved the most reliable prediction results in real cases and achieved competitive performance in all datasets in the CMI prediction.

13.
Front Cell Neurosci ; 17: 1136070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323581

RESUMEN

Neuroinflammation plays a crucial role in the occurrence and development of cognitive impairment in type 2 diabetes mellitus (T2DM), but the specific injury mechanism is not fully understood. Astrocyte polarization has attracted new attention and has been shown to be directly and indirectly involved in neuroinflammation. Liraglutide has been shown to have beneficial effects on neurons and astrocytes. However, the specific protection mechanism still needs to be clarified. In this study, we assessed the levels of neuroinflammation and A1/A2-responsive astrocytes in the hippocampus of db/db mice and examined their relationships with iron overload and oxidative stress. First, in db/db mice, liraglutide alleviated the disturbance of glucose and lipid metabolism, increased the postsynaptic density, regulated the expression of NeuN and BDNF, and partially restored impaired cognitive function. Second, liraglutide upregulated the expression of S100A10 and downregulated the expression of GFAP and C3, and decreased the secretion of IL-1ß, IL-18, and TNF-α, which may confirm that it regulates the proliferation of reactive astrocytes and A1/A2 phenotypes polarize and attenuate neuroinflammation. In addition, liraglutide reduced iron deposition in the hippocampus by reducing the expression of TfR1 and DMT1 and increasing the expression of FPN1; at the same time, liraglutide by up-regulating the levels of SOD, GSH, and SOD2 expression, as well as downregulation of MDA levels and NOX2 and NOX4 expression to reduce oxidative stress and lipid peroxidation. The above may attenuate A1 astrocyte activation. This study preliminarily explored the effect of liraglutide on the activation of different astrocyte phenotypes and neuroinflammation in the hippocampus of a T2DM model and further revealed its intervention effect on cognitive impairment in diabetes. Focusing on the pathological consequences of astrocytes may have important implications for the treatment of diabetic cognitive impairment.

14.
Nature ; 618(7964): 294-300, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940729

RESUMEN

Chiral amines are commonly used in the pharmaceutical and agrochemical industries1. The strong demand for unnatural chiral amines has driven the development of catalytic asymmetric methods1,2. Although the N-alkylation of aliphatic amines with alkyl halides has been widely adopted for over 100 years, catalyst poisoning and unfettered reactivity have been preventing the development of a catalyst-controlled enantioselective version3-5. Here we report the use of chiral tridentate anionic ligands to enable the copper-catalysed chemoselective and enantioconvergent N-alkylation of aliphatic amines with α-carbonyl alkyl chlorides. This method can directly convert feedstock chemicals, including ammonia and pharmaceutically relevant amines, into unnatural chiral α-amino amides under mild and robust conditions. Excellent enantioselectivity and functional-group tolerance were observed. The power of the method is demonstrated in a number of complex settings, including late-stage functionalization and in the expedited synthesis of diverse amine drug molecules. The current method indicates that multidentate anionic ligands are a general solution for overcoming transition-metal-catalyst poisoning.


Asunto(s)
Alquilación , Aminas , Catálisis , Cobre , Amidas/química , Aminas/química , Cobre/química , Ligandos , Preparaciones Farmacéuticas/química
15.
J Am Chem Soc ; 145(11): 6535-6545, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36912664

RESUMEN

Transition-metal-catalyzed enantioselective functionalization of acyl radicals has so far not been realized, probably due to their relatively high reactivity, which renders the chemo- and stereocontrol challenging. Herein, we describe Cu(I)-catalyzed enantioselective desymmetrizing C-O bond coupling of acyl radicals. This reaction is compatible with (hetero)aryl and alkyl aldehydes and, more importantly, displays a very broad scope of challenging alcohol substrates, such as 2,2-disubstituted 1,3-diols, 2-substituted-2-chloro-1,3-diols, 2-substituted 1,2,3-triols, 2-substituted serinols, and meso primary 1,4-diols, providing enantioenriched esters characterized by challenging acyclic tetrasubstituted carbon stereocenters. Partnered by one- or two-step follow-up transformations, this reaction provides a convenient and practical strategy for the rapid preparation of chiral C3 building blocks from readily available alcohols, particularly the industrially relevant glycerol. Mechanistic studies supported the proposed C-O bond coupling of acyl radicals.

16.
Int J Nanomedicine ; 18: 843-859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824413

RESUMEN

Background: Chronic intermittent hypoxia (CIH) could cause neuronal damage, accelerating the progression of dementia. However, safe and effective therapeutic drugs and delivery are needed for successful CIH therapy. Purpose: To investigate the neuroprotective effect of Huperzine A (HuA) packaged with nanoliposomes (HuA-LIP) on neuronal damage induced by CIH. Methods: The stability and release of HuA-LIP in vitro were identified. Mice were randomly divided into the Control, CIH, HuA-LIP, and HuA groups. The mice in the HuA and HuA-LIP groups received HuA (0.1 mg/kg, i.p.), and HuA-LIP was administered during CIH exposure for 21 days. HuA-LIP contains the equivalent content of HuA. Results: We prepared a novel formulation of HuA-LIP that had good stability and controlled release. First, HuA-LIP significantly ameliorated cognitive dysfunction and neuronal damage in CIH mice. Second, HuA-LIP elevated T-SOD and GSH-Px abilities and decreased MDA content to resist oxidative stress damage induced by CIH. Furthermore, HuA-LIP reduced brain iron levels by downregulating TfR1, hepcidin, and FTL expression. In addition, HuA-LIP activated the PKAα/Erk/CREB/BDNF signaling pathway and elevated MAP2, PSD95, and synaptophysin to improve synaptic plasticity. Most importantly, compared with HuA, HuA-LIP showed a superior performance against neuronal damage induced by CIH. Conclusion: HuA-LIP has a good sustained-release effect and targeting ability and efficiently protects against neural injury caused by CIH.


Asunto(s)
Alcaloides , Liposomas , Ratones , Animales , Liposomas/farmacología , Hipoxia/metabolismo , Hipocampo , Alcaloides/farmacología , Estrés Oxidativo
17.
Nat Chem ; 15(3): 395-404, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36575341

RESUMEN

The transition-metal-catalysed cross-coupling reaction has established itself as one of the most reliable and practical synthetic tools for the efficient construction of carbon-carbon/heteroatom (p-block elements other than carbon) bonds in both racemic and enantioselective manners. In contrast, development of the corresponding heteroatom-heteroatom cross-couplings has so far remained elusive, probably due to the under-investigated and often challenging heteroatom-heteroatom reductive elimination. Here we demonstrate the use of single-electron reductive elimination as a strategy for developing enantioselective S-O coupling under Cu catalysis, based on both experimental and theoretical results. The reaction manifests its synthetic potential by the ready preparation of challenging chiral alcohols featuring congested stereocentres, the expedient valorization of the biomass-derived feedstock glycerol, and the remarkable catalytic 4,6-desymmetrization of inositol. These results demonstrate the potential of enantioselective radical heteroatomic cross-coupling as a general chiral heteroatom-heteroatom formation strategy.

18.
Biomolecules ; 12(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358958

RESUMEN

The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have crucial roles in regulating energy homeostasis. The melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) have been shown to regulate neural MCRs in a species-specific manner. The potential effects of MRAP1 and MRAP2 on canine neural MCRs have not been investigated before. Herein, we cloned canine (c) MC3R and identified one canine MRAP2 splice variant, MRAP2b, with N-terminal extension of cMRAP2a. Canine MC3R showed higher maximal responses to five agonists than those of human MC3R. We further investigated the modulation of cMRAP1, cMRAP2a, and cMRAP2b, on cMC3R and cMC4R pharmacology. For the cMC3R, all MRAPs had no effect on trafficking; cMRAP1 significantly decreased Bmax whereas cMRAP2a and cMRAP2b significantly increased Bmax. Both MRAP1 and MRAP2a decreased Rmaxs in response to α-MSH and ACTH; MRAP2b only decreased α-MSH-stimulated cAMP generation. For the MC4R, MRAP1 and MRAP2a increased cell surface expression, and MRAP1 and MRAP2a increased Bmaxs. All MRAPs had increased affinities to α-MSH and ACTH. MRAP2a increased ACTH-induced cAMP levels, whereas MRAP2b decreased α-MSH- and ACTH-stimulated cAMP production. These findings may lead to a better understanding of the regulation of neural MCRs by MRAP1 and MRAP2s.


Asunto(s)
Melanocortinas , Receptor de Melanocortina Tipo 2 , Perros , Animales , Humanos , Melanocortinas/metabolismo , Receptor de Melanocortina Tipo 2/metabolismo , alfa-MSH/metabolismo , alfa-MSH/farmacología , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/metabolismo , Receptores de Melanocortina/metabolismo , Proteínas Portadoras/metabolismo
19.
Biochem Pharmacol ; 206: 115334, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328133

RESUMEN

Monocyte chemotactic protein-1 (MCP-1) is known to be able to facilitate vascular endothelial growth factor (VEGF) gene expression, hence promoting vascular hyperpermeability and neovascularization. We show here that a microRNA molecule, miR-374b-5p can target the 3'-untranslated region of the VEGF mRNA, thus preventing VEGF production. Additionally, MCP-1 promotes the acetylation of transcription factor stat3 at Lys685, which facilitates the formation of an ac-stat3-DNA methyltransferase-histone methyltransferase complex (ac-stat3/DNMT1/EZH2) that binds to the promoter of the miR-374b-5p gene. This results in diminished miR-374b-5p expression and enhanced VEGF production. Moreover, treatment of appropriate animal models either with a miR-374b-5p mimicry or with inhibitors of either stat3 acetylation, DNMT1, or EZH2, leads to marked inhibition of MCP-1-promoted neovascularization and tumor growth. These findings indicate that MCP-1 facilitated inhibition of miR-374b-5p gene expression leads to the removal of a block of VEGF mRNA translation by miR-374b-5p. This mechanism could be of importance in the modulation of inflammatory conditions.


Asunto(s)
MicroARNs , Factor A de Crecimiento Endotelial Vascular , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Biosíntesis de Proteínas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regiones no Traducidas 3' , Neovascularización Patológica/genética
20.
ACS Pharmacol Transl Sci ; 5(5): 344-361, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35592439

RESUMEN

During the development of a melanocortin (MC) peptide drug to treat the condition of cachexia (a hypermetabolic state producing lean body mass wasting), we were confronted with the need for peptide transport across the blood-brain barrier (BBB): the MC-4 receptors (MC4Rs) for metabolic rate control are located in the hypothalamus, i.e., behind the BBB. Using the term "peptides with BBB transport", we screened the medical literature like a peptide library. This revealed numerous "hits"-peptides with BBB transport and/or oral activity. We noted several features common to most peptides in this class, including a dipeptide sequence of nonpolar residues, primary structure cyclization (whole or partial), and a Pro-aromatic motif usually within the cyclized region. Based on this, we designed an MC4R antagonist peptide, TCMCB07, that successfully treated many forms of cachexia. As part of our pharmacokinetic characterization of TCMCB07, we discovered that hepatobiliary extraction from blood accounted for a majority of the circulating peptide's excretion. Further screening of the literature revealed that TCMCB07 is a member of a long-forgotten peptide class, showing active transport by a multi-specific bile salt carrier. Bile salt transport peptides have predictable pharmacokinetics, including BBB transport, but rapid hepatic clearance inhibited their development as drugs. TCMCB07 shares the general characteristics of the bile salt peptide class but with a much longer half-life of hours, not minutes. A change in its C-terminal amino acid sequence slows hepatic clearance. This modification is transferable to other peptides in this class, suggesting a platform approach for producing drug-like peptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA