Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 233: 116411, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354929

RESUMEN

The growing use of plastic materials has resulted in a constant increase in the risk associated with microplastics (MPs). Ultra-violet (UV) light and wind break down modify MPs in the environment into smaller particles known as weathered MPs (WMPs) and these processes increase the risk of MP toxicity. The neurotoxicity of weathered polystyrene-MPs remains unclear. Therefore, it is important to understand the risks posed by WMPs. We evaluated the chemical changes of WMPs generated under laboratory-synchronized environmentally mimetic conditions and compared them with virgin MPs (VMPs). We found that WMP had a rough surface, slight yellow color, reduced molecular weight, and structural alteration compared with those of VMP. Next, 2 µg of ∼100 µm in size of WMP and VMP were orally administered once a day for one week to C57BL/6 male mice. Proteomic analysis revealed that the WMP group had significantly increased activation of immune and neurodegeneration-related pathways compared with that of the VMP group. Consistently, in in vitro experiments, the human brain-derived microglial cell line (HMC-3) also exhibited a more severe inflammatory response to WMP than to VMP. These results show that WMP is a more profound inflammatory factor than VMP. In summary, our findings demonstrate the toxicity of WMPs and provide theoretical insights into their potential risks to biological systems and even humans in the ecosystem.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Ratones , Masculino , Microplásticos/toxicidad , Plásticos , Poliestirenos/toxicidad , Poliestirenos/análisis , Proteoma , Ecosistema , Proteómica , Ratones Endogámicos C57BL , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Encéfalo
2.
Sci Rep ; 11(1): 22369, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785728

RESUMEN

The cannabinoid receptor 1 (CB1) is a class A G-protein coupled receptor (GPCR) that can exert various effects on the human body through the endocannabinoid system. Understanding CB1 activation has many benefits for the medical use of cannabinoids. A previous study reported that CB1 has two notable residues referred to as the toggle switch, F3.36 and W6.48, which are important for its activation mechanism. We performed a molecular dynamics simulation with a mutation in the toggle switch to examine its role in active and inactive states. We also examined structural changes, the residue-residue interaction network, and the interaction network among helices and loops of wildtype and mutant CB1 for both activation states. As a result, we found that the energetic changes in the hydrogen-bond network of the Na+ pocket, extracellular N-terminus-TM2-ECL1-TM3 interface including D2.63-K3.28 salt-bridge, and extracellular ECL2-TM5-ECL3-TM6 interface directly linked to the toggle switch contribute to the stability of CB1 by the broken aromatic interaction of the toggle switch. It makes the conformation of inactive CB1 receptor to be unstable. Our study explained the role of the toggle switch regarding the energetic interactions related to the Na+ pocket and extracellular loop interfaces, which could contribute to a better understanding of the activation mechanism of CB1.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Cannabinoide CB1/química , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...