Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Public Health Pract (Oxf) ; 7: 100494, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584806

RESUMEN

Objective: To reduce the incidence of severe illness and fatalities, and promote the awareness of protection and precaution, increased vaccination, strengthen the physical fitness, frequent ventilation, and health education should be enhanced among vulnerable populations as essential measures for the future control of COVID-19. Study design: Systematic review. Method: The search was done using PubMed, EMBASE and Web of Science for studies without language restrictions, published up through March 2023, since their authoritative and comprehensive literature search database. Eighty articles were included. Extraction of articles and quality assessment of included reviews was performed independently by two authors using the AMSTAR 2 score. Results: The articles in the final data set included research on epidemiological characteristics, pathogenicity, available vaccines, treatments and epidemiological features in special populations including the elders, pregnant women, kids, people with chronic diseases concerning Omicron. Conclusion: Although less pathogenic potential is found in Omicron, highly mutated forms have enhanced the ability of immune evasion and resistance to existing vaccines compared with former variants. Severe complications and outcomes may occur in vulnerable populations. Infected pregnant women are more likely to give birth prematurely, and fatal implications in children infected with Omicron are hyperimmune response and severe neurological disorders. In immunocompromised patients, there is a greater reported mortality and complication compared to patients with normal immune systems. Therefore, maintain social distancing, wear masks, and receive vaccinations are effective long-term measures.

2.
Virol J ; 21(1): 100, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689312

RESUMEN

BACKGROUND: In the aftermath of the COVID-19 pandemic, there has been a surge in human metapneumovirus (HMPV) transmission, surpassing pre-epidemic levels. We aim to elucidate the clinical and epidemiological characteristics of HMPV infections in the post-COVID-19 pandemic era. METHODS: In this retrospective single-center study, participants diagnosed with laboratory confirmed HMPV infection through Targeted Next Generation Sequencing were included. The study encompassed individuals admitted to Henan Children's Hospital between April 29 and June 5, 2023. Demographic information, clinical records, and laboratory indicators were analyzed. RESULTS: Between April 29 and June 5, 2023, 96 pediatric patients were identified as infected with HMPV with a median age of 33.5 months (interquartile range, 12 ~ 48 months). The majority (87.5%) of infected children were under 5 years old. Notably, severe cases were statistically younger. Predominant symptoms included fever (81.3%) and cough (92.7%), with wheezing more prevalent in the severe group (56% vs 21.1%). Coinfection with other viruses was observed in 43 patients, with Epstein-Barr virus (EBV) (15.6%) or human rhinovirus A (HRV type A) (12.5%) being the most common. Human respiratory syncytial virus (HRSV) coinfection rate was significantly higher in the severe group (20% vs 1.4%). Bacterial coinfection occurred in 74 patients, with Haemophilus influenzae (Hin) and Streptococcus pneumoniae (SNP) being the most prevalent (52.1% and 41.7%, respectively). Severe patients demonstrated evidence of multi-organ damage. Noteworthy alterations included lower concentration of IL-12p70, decreased lymphocytes percentages, and elevated B lymphocyte percentages in severe cases, with statistical significance. Moreover, most laboratory indicators exhibited significant changes approximately 4 to 5 days after onset. CONCLUSIONS: Our data systemically elucidated the clinical and epidemiological characteristics of pediatric patients with HMPV infection, which might be instructive to policy development for the prevention and control of HMPV infection and might provide important clues for future HMPV research endeavors.


Asunto(s)
COVID-19 , Metapneumovirus , Infecciones por Paramyxoviridae , Humanos , China/epidemiología , Preescolar , Metapneumovirus/genética , Metapneumovirus/aislamiento & purificación , Estudios Retrospectivos , Femenino , Masculino , Lactante , Infecciones por Paramyxoviridae/epidemiología , Infecciones por Paramyxoviridae/virología , COVID-19/epidemiología , Niño , Coinfección/epidemiología , Coinfección/virología , SARS-CoV-2/genética
4.
Virology ; 591: 109989, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38219371

RESUMEN

Enteroviruses (EVs), comprise a genus in the Picornaviridae family, which have been shown to be neurotropic and can cause various neurological disorders or long-term neurological condition, placing a huge burden on society and families. The blood-brain barrier (BBB) is a protective barrier that prevents dangerous substances from entering the central nervous system (CNS). Recently, numerous EVs have been demonstrated to have the ability to disrupt BBB, and further lead to severe neurological damage. However, the precise mechanisms of BBB disruption associated with these EVs remain largely unknown. In this Review, we focus on the molecular mechanisms of BBB dysfunction caused by EVs, emphasizing the invasiveness of enterovirus A71 (EVA71), which will provide a research direction for further treatment and prevention of CNS disorders.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Barrera Hematoencefálica , Enterovirus/fisiología , Sistema Nervioso Central , Transporte Biológico
5.
J Med Virol ; 95(12): e29316, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38103032

RESUMEN

An increasing number of studies have reported that atypical hand, foot, and mouth disease (HFMD) is becoming a new concern for children's health. At present, there is no official definition for atypical HFMD, but some studies have defined that it occurs at anatomic sites not listed in the definition of HFMD issued by the World Health Organization. Several pathogens have been reported to cause atypical HFMD, such as Coxsackievirus (CV)A6. As one of the most prevalent enteroviruses in the world, CVA6 seems to affect a wider range of children and causes more severe and prolonged illness than other enteroviruses. The early lesions of atypical HFMD are very similar to the clinical presentations of other diseases, such as eczema, which poses a challenge for clinicians aiming to identify and diagnose HFMD in a timely manner. Here, we report on six atypical HFMD patients caused by recombinant CVA6 variants, and the atypical manifestations include eczema coxsackium, large herpes, rice-like red papules and herpes, purpuric rash, and onychomadesis, as well as and large red herpes on scalp, perianal, testicles, shoulders and neck, and other atypical eruption sites, hoping to draw the attention of other pediatricians. This study will provide scientific guidance for timely diagnosis of HFMD to prevent serious complications.


Asunto(s)
Eccema , Enterovirus , Exantema , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Enfermedad de Boca, Mano y Pie/diagnóstico , Filogenia , Enterovirus/genética , China , Anticuerpos Antivirales
6.
J Infect Dis ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738556

RESUMEN

Coxsackievirus (CV) A6 is currently considered as a predominant pathogen of hand, foot, and mouth disease (HFMD), and is occasionally linked to myocardial injury. We first established a mouse model of CVA6-induced myocardial injury. Next, we analyzed the immune cell phenotypes CVA6-infected mice hearts by FACS, and found that CVA6 led to massive neutrophils infiltration, suggesting their potential link with the occurrence of myocardial injury. We further used either αGr-1 or αLy6G antibody to deplete neutrophils, and found that neutrophil-depleted animals showed decreased cardiac enzymes, lower degree pathology in hearts, and reduced inflammatory cytokine production compared to isotype controls. Finally, we confirmed the involvement of neutrophils in myocardial injury of clinical patients with severe HFMD. Overall, our study suggests that excessive neutrophils contribute to myocardial injury caused by CVA6 infection, which provides new insight into myocardial injury during the development of HFMD severity and the outcome of immune cell-mediated therapies.

7.
Vaccine ; 41(43): 6470-6482, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37718187

RESUMEN

Coxsackievirus A2 (CVA2) is one of the causative agents of hand-foot-and-mouth disease (HFMD), which poses a great challenge for global public health. However, presently, there are no available commercial vaccines or antivirals to prevent CVA2 infection. Here, we present an inactivated Vero cell-based whole CVA2 vaccine candidate and evaluate its safety and efficacy in this study. Neonatal BALB/c mice were vaccinated at 5 and 7 days old, respectively, and then challenged with either homologous or heterologous strain of CVA2 at a lethal dose at 10 days old. The inactivated whole CVA2 vaccine candidate showed a high protective efficacy. Additionally, our inactivated vaccine stimulated the production of CVA2-specific IgG1 and IgG2a antibodies in vivo and high titers of neutralization antibodies (NtAbs) in the serum of immunized mice. Maternal immunization with the inactivated CVA2 vaccine provided full protection to pups against lethal infection. Compared with mice inoculated with only alum, the viral loads were decreased, and pathological changes were relieved in tissue samples of immunized mice. Moreover, the transcription levels of some genes related to cytokines (IFN-γ and TNF-α, MCP-1, IL-6, CXCL-10 etc.) were significantly reduced. The number of immune cells and levels of cytokines in peripheral blood of mice inoculated with only alum were higher than that of immunized mice. It is noteworthy that this vaccine showed a good cross-immunity efficacy against Enterovirus A71 (EVA71) challenge. In conclusion, our findings suggest that this experimental inactivated CVA2 vaccine is a promising component of polyvalent vaccines related to HFMD in the near future.

8.
J Med Virol ; 95(7): e28939, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37409616

RESUMEN

Some children infected with hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) progressed to severe disease with various neurological complications in the short term, with a poor prognosis and high mortality. Studies had revealed that RNA N6 -methyladenosine (m6 A) modification had a significant impact on EV71 replication, but it was unknown how m6 A modification regulated the host cell's innate immune response brought on by EV71 infection. We used MeRIP-seq (methylation RNA immunoprecipitation sequencing), RNA-seq (RNA sequencing), cell transfection, and other techniques. MeRIP-seq and RNA-seq results showed the m6 A methylation modification map of control and EV71-infected groups of RD cells. And multilevel validation indicated that decreased expression of demethylase FTO (fat mass and obesity-associated protein) was responsible for the elevated total m6 A modification levels in EV71-infected RD cells and that thioredoxin interacting protein (TXNIP) may be a target gene for demethylase FTO action. Further functional experiments showed that demethylase knockdown of FTO promoted TXNIP expression, activation of NLRP3 inflammasome and promoted the release of proinflammatory factors in vitro, and the opposite result occurred with demethylase FTO overexpression. And further tested in an animal model of EV71 infection in vitro, with results consistent with in vitro. Our findings elucidated that depletion of the demethylase FTO during EV71 infection increased the m6 A modification level of TXNIP mRNA 3' untranslated region (UTR), enhancing mRNA stability, and promoting TXNIP expression. Consequently, the NLRP3 inflammasome was stimulated, leading to the release of proinflammatory factors and facilitating HFMD progression.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Enterovirus/genética , Enterovirus Humano A/genética , Enfermedad de Boca, Mano y Pie/genética , Inflamasomas/genética , Metilación , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN , Humanos
9.
Vaccines (Basel) ; 11(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36992155

RESUMEN

Hand, Foot, and Mouth Disease (HFMD) is an infectious disease caused by enteroviruses (EVs) and is extremely contagious and prevalent among infants and children under 5 years old [...].

10.
Vaccines (Basel) ; 11(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36851282

RESUMEN

Hand, foot, and mouth disease (HFMD) is a mild exanthematous, febrile disease, but it also remains a threat to global public health. HFMD is characterized by a brief febrile illness in children and with a typical skin rash of the hand and foot, with or without mouth ulcers. However, the morphology and distribution of vesicles, as well as accompanying symptoms, are varied among atypical HFMD. An upsurge in atypical presentations of HFMD caused by Coxsackievirus A6 (CVA6), including Gianotti-Crosti-like eruptions, eczema coxsackium, petechial/purpuric eruption, and vesiculobullous exanthema, can be difficult to diagnose clinically as it may mimic other severe skin diseases, such as eczema herpeticum, varicella, disseminated zoster, and erythema multiforme major. The recognition of the distinguishing features of atypical HFMD is vital for an accurate and timely diagnosis, as is initiating appropriate laboratory evaluation and supportive care. Clinicians must identify the wide range of cutaneous and mucosal alterations caused by atypical HFMD. A systemic, high-quality overview of atypical HFMD is needed for advances in better strategies for clinical diagnosis and treatment. Hence, this review is aimed at summarizing the available data on clinical investigations and differential diagnostics to provide a scientific guide for the timely diagnosis of HFMD for preventing serious complications.

11.
Emerg Microbes Infect ; 12(1): 2177084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36735880

RESUMEN

ABSTRACTCoxsackievirus A19 (CVA19) is a member of Enterovirus (EV) C group in the Picornaviridae family. Recently, we reported a case of CVA19-infected hand, foot, and mouth disease (HFMD) for the first time. However, the current body of knowledge on the CVA19 infection, particularly the pathogenesis of encephalomyelitis and diarrhoea is still very limited, due to the lack of suitable animal models. Here, we successfully established a CVA19 mouse model via oral route based on 7-day-old ICR mice. Our results found the virus strain could directly infect the neurons, astrocytes of brain, and motor neurons of spinal cord causing neurological complications, such as acute flaccid paralysis. Importantly, viruses isolated from the spinal cords of infected mice caused severe illness in suckling mice, fulfilling Koch's postulates to some extent. CVA19 infection led to diarrhoea with typical pathological features of shortened intestinal villi, increased number of secretory cells and apoptotic intestinal cells, and inflammatory cell infiltration. Much higher concentrations of serum cytokines and more peripheral blood inflammatory cells in CVA19-infected mice indicated a systematic inflammatory response induced by CVA19 infection. Finally, we found ribavirin and CVA19 VP1 monoclonal antibody could not prevent the disease progression, but higher concentrations of antisera and interferon alpha 2 (IFN-α2) could provide protective effects against CVA19. In conclusion, this study shows that a natural mouse-adapted CVA19 strain leads to diarrhoea and encephalomyelitis in a mouse model via oral infection, which provides a useful tool for studying CVA19 pathogenesis and evaluating the efficacy of vaccines and antivirals.


Asunto(s)
Encefalomielitis , Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , Ratones , Animales , Ratones Endogámicos ICR , Antivirales/uso terapéutico , Modelos Animales de Enfermedad
12.
J Biomed Sci ; 30(1): 15, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829162

RESUMEN

Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Fiebre Aftosa , Enfermedad de Boca, Mano y Pie , Animales , Fiebre Aftosa/complicaciones , Fiebre Aftosa/epidemiología , Enfermedad de Boca, Mano y Pie/epidemiología , Brotes de Enfermedades , China/epidemiología
13.
J Med Virol ; 95(2): e28454, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36597906

RESUMEN

Pulmonary edema that comes on suddenly is the leading cause of mortality in hand-foot-and-mouth disease (HFMD) patients; however, its pathogenesis is still largely unclear. A range of research suggest immunopathogenesis during the occurrence of pulmonary edema in severe HFMD patients. Herein, to investigate the potential mechanism of immune dysregulation in the development of pulmonary edema upon Enterovirus (EV) infection, we established mouse infection models for Enteroviruses (EVs) including Coxsackievirus (CV) A6, Enterovirus A71 (EVA71), and CVA2 exhibiting a high incidence of pulmonary edema. We found that EVs infection induced an immune system disorder by reducing the numbers of pulmonary and circulatory T cells, B cells, macrophages, and monocytes and increasing the numbers of lung neutrophils, myeloid-derived suppressor cells (MDSCs), and activated T cells. In addition, the concentrations of C-X-C motif chemokine ligand 1 (CXCL-1), tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and interleukin 6 were increased in EV-infected lungs. Moreover, we found that EVs replication in mice lungs lead to apoptosis of lung cells and degradation of tight junction proteins. In conclusion, EVs infection likely triggered a complexed immune defense mechanism and caused dysregulation of innate immune cells (MDSCs, neutrophils, monocytes, and macrophages) and adaptive cellular immunity (B cells, T cells). This dysregulation increased the release of cytokines and other inflammatory factors from activated immune-related cells and caused lung barrier damage and pulmonary edema.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Edema Pulmonar , Animales , Ratones , Infecciones por Enterovirus/epidemiología , Pulmón
14.
PLoS Negl Trop Dis ; 17(1): e0011001, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36626364

RESUMEN

BACKGROUND: Enterovirus A71 (EV-A71) is an important causative agent of hand-foot-and-mouth disease (HFMD) associated with enormous healthcare and socioeconomic burden. Although a range of studies about EV-A71 pathogenesis have been well described, the underlying molecular mechanism in terms of innate immune response is still not fully understood, especially the roles of TANK-binding kinase 1 (TBK1) and interferon-regulatory factor 3 (IRF3). METHODOLOGY/PRINCIPAL FINDINGS: Here, we applied TBK1 inhibitor and IRF3 agonist, for the first time, to evaluate the antiviral activities of TBK1 and IRF3 in vivo. We found that, through regulating EV-A71-induced type I interferon (IFN) response, IRF3 agonist effectively alleviated EV-A71-induced illness, while TBK1 inhibitor aggravated disease progression. In addition, EV-A71 replication was suppressed in EVA-71-infected mice administrated with IRF3 agonist. On the other hand, more severe pathological alterations of neuronal degeneration, muscle fiber breaks, fractured or fused alveolar walls, and diffuse congestion occurred in EVA-71-infected mice treated with TBK1 inhibitor administration. Furthermore, we determined the concentrations of interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), IL-1ß, monocyte chemotactic protein-1 (MCP-1), and IL-10 in both lungs and brains of mice and found that TBK1 inhibitor promoted EV-A71-induced inflammatory response, while IRF3 agonist alleviated it, which was consistent with clinical manifestations and pathological alterations. CONCLUSIONS: Collectively, our findings suggest that TBK1 and IRF3 are potential therapeutic targets in EV-A71-induced illness.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Infecciones por Enterovirus/tratamiento farmacológico , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico , Antígenos Virales
15.
Vaccines (Basel) ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36366337

RESUMEN

OBJECTIVE: The purpose of this study is to study laboratory indicators for the identification of hand, foot, and mouth disease (HFMD) severity. METHODS: We searched PubMed, Embase, and the Web of Science for literature that was published before May 2022. The main results are presented as forest plots. Subgroup analyses, sensitivity analyses, and publication bias were also performed. RESULTS: Our study indicated that white blood cells (WBC) (95%CI: 0.205-0.778), blood glucose (95%CI: 0.505-0.778), lymphocytes (95%CI: 0.072-0.239), creatinine (95%CI: 0.024-0.228), interleukin (IL)-2 (95%CI: 0.192-1.642), IL-6 (95%CI: 0.289-0.776), IL-8 (95%CI: 0.499-0.867), IL-10 (95%CI: 0.226-0.930), interferon-γ (IFN-γ) (95%CI: 0.193-2.584), tumor necrosis factor-α (TNF-α) (95%CI: 1.078-2.715), and creatine kinase MB isoenzyme (CK-MB) (95%CI: 0.571-1.459) were associated with an increased risk of HFMD severity, and the results of the sensitivity analysis of these indicators were stable and free of publication bias. CONCLUSIONS: Our results suggest that various deleterious immune and metabolic changes can increase the risk of HFMD severity, which can provide a basis for predicting the prognosis and useful evidence for clinicians to manage patients efficiently.

16.
Viruses ; 14(11)2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36366421

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the global epidemic of Coronavirus Disease 2019 (COVID-19), with a significant impact on the global economy and human safety. Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard for detecting SARS-CoV-2, but because the virus's genome is prone to mutations, the effectiveness of vaccines and the sensitivity of detection methods are declining. Variants of concern (VOCs) include Alpha, Beta, Gamma, Delta, and Omicron, which are able to evade recognition by host immune mechanisms leading to increased transmissibility, morbidity, and mortality of COVID-19. A range of research has been reported on detection techniques for VOCs, which is beneficial to prevent the rapid spread of the epidemic, improve the effectiveness of public health and social measures, and reduce the harm to human health and safety. However, a meaningful translation of this that reduces the burden of disease, and delivers a clear and cohesive message to guide daily clinical practice, remains preliminary. Herein, we summarize the capabilities of various nucleic acid and protein-based detection methods developed for VOCs in identifying and differentiating current VOCs and compare the advantages and disadvantages of each method, providing a basis for the rapid detection of VOCs strains and their future variants and the adoption of corresponding preventive and control measures.


Asunto(s)
COVID-19 , Epidemias , Humanos , SARS-CoV-2/genética , ARN Viral/genética , ARN Viral/análisis , COVID-19/diagnóstico , COVID-19/prevención & control
17.
Emerg Microbes Infect ; 11(1): 2248-2263, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36036059

RESUMEN

CVA6 is one of Enteroviruses causing worldwide epidemics of HFMD with neurological and systemic complications. A suitable animal model is necessary for studying the pathogenesis of CVA6 and evaluating antiviral and vaccine efficacy. In this study, we generated a mouse-adapted CVA6 strain that successfully infected 10-day-old ICR mice via oral route. All infected mice were paralyzed and died within 11 dpi. Analysis of pathological changes and virus loads in fourteen tissues showed that CVA6 triggered systematic damage similar to i.p. inoculation route. Unlike i.p. route, we detected oral and gastrointestinal lesions with the presence of viral antigens. Both specific anti-CVA6 serum and inactivated vaccines successfully generated immune protection in mice. Meanwhile, we also established a successful infection of CVA6 via i.p. and i.m. route in 10-day-old mice. After infection, mice developed remarkably neurological signs and systemic manifestations such as emaciation, polypnea, quadriplegia, depilation and even death. Through i.p. inoculation, pathological examination showed brain and spinal cord damage caused by the virus infection with neuronal reduction, apoptosis, astrocyte activation, and recruitment of neutrophils and monocytes. Following neurological manifestation, the CVA6 infection became systemic, and high viral loads were detected in multiple organs along with morphological changes and inflammation. Moreover, analysis of spleen cells by FACS indicated that CVA6 led to immune system activation, which further contributed to systemic inflammation. Taken together, our novel murine model of CVA6 provides a useful tool for studying the pathogenesis and evaluating antiviral and vaccine efficacy.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Antígenos Virales , Antivirales , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Endogámicos ICR , Vacunas de Productos Inactivados
18.
Microbiol Spectr ; 10(3): e0230721, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35604176

RESUMEN

Coxsackievirus A2 (CVA2) is an emerging pathogen that results in hand-foot-and-mouth disease (HFMD) outbreaks. Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD. However, the immunopathogenesis of CVA2 infection is poorly understood. We first detected the transcriptional levels of 81 inflammation-related genes in neonatal mice with CVA2 infection. Remarkably, CVA2 induced higher expression of chemokine (C-X-C motif) ligand 10 (CXCL10) in multiple organs and tissues. CXCL10 acts through its cognate receptor chemokine (C-X-C motif) receptor 3 (CXCR3) and regulates immune responses. CXCL10/CXCR3 activation contributes to the pathogenesis of many inflammatory diseases. Next, we found CXCL10 and CXCR3 expression to be significantly elevated in the organs and tissues from CVA2-infected mice at 5 days postinfection (dpi) using immunohistochemistry (IHC). To further explore the role of CXCL10/CXCR3 in CVA2 pathogenesis, an anti-CXCR3 neutralizing antibody (αCXCR3) or IgG isotype control antibody was used to treat CVA2-infected mice on the same day as infection and every 24 h until 5 dpi. Our results showed that αCXCR3 therapy relieved the clinical manifestations and pathological damage and improved the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α], and IL-1ß) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis by inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD. IMPORTANCE Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD cases. We detected the expression of 81 inflammation-related genes and found higher expression of CXCL10 in CVA2-infected mice. Next, we confirmed CXCL10/CXCR3 activation using immunohistochemistry and found that anti-CXCR3 neutralizing antibody (αCXCR3) therapy could relieve the clinical manifestations and pathological damage and improve the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (IL-6, TNF-α, and IL-1ß) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents the first evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis via inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD.


Asunto(s)
Quimiocina CXCL10/metabolismo , Infecciones por Coxsackievirus , Receptores CXCR3/metabolismo , Animales , Anticuerpos Neutralizantes , Quimiocina CXCL10/genética , Inflamación , Interleucina-6 , Ratones , Síndrome de Respuesta Inflamatoria Sistémica , Factor de Necrosis Tumoral alfa
19.
Front Cell Infect Microbiol ; 12: 765445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155276

RESUMEN

Coxsackievirus A2 (CVA2) has recently been constantly detected, and is associated with viral myocarditis in children. Our previous study demonstrated that CVA2 led to heart damage in a neonatal murine model. However, the molecular mechanism of heart injury caused by CVA2 remains largely unknown. Emerging evidence suggests the significant functions of miRNAs in Coxsackievirus infection. To investigate potential miRNAs involved in heart injury caused by CVA2, our study, for the first time, conducted a RNA-seq in vivo employing infected mice hearts. In total, 87, 101 and 76 differentially expressed miRNAs were identified at 3 days post infection (dpi), 7 dpi and 7 dpi vs 3 dpi. Importantly, above 3 comparison strategies shared 34 differentially expressed miRNAs. These results were confirmed by quantitative PCR (qPCR). Next, we did GO, KEGG, and miRNA-mRNA integrated analysis of differential miRNAs. The dual-luciferase reporter assay confirmed the miRNA-mRNA pairs. To further confirm the above enriched pathways and processes, we did Western blotting and immunofluorescence staining. Our results suggest that inflammatory responses, T cell activation, apoptosis, autophagy, antiviral immunity, NK cell infiltration, and the disruption of tight junctions are involved in the pathogenesis of heart injury caused by CVA2. The dysregulated miRNAs and pathways recognized in the current study can improve the understanding of the intricate interactions between CVA2 and the heart injury, opening a novel avenue for the future study of CVA2 pathogenesis.


Asunto(s)
Infecciones por Coxsackievirus , Lesiones Cardíacas , MicroARNs , Animales , Apoptosis , Infecciones por Coxsackievirus/patología , Perfilación de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
20.
Sci Total Environ ; 825: 153964, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35182631

RESUMEN

Fine particulate matter (PM2.5) pollution poses significant health concerns worldwide and can cause respiratory diseases. However, how it causes health problems is still poorly understood. Angiotensin-converting enzyme (ACE)2 is a terminal carboxypeptidase implicated in the functions of renin-angiotensin system (RAS) and plays a crucial role in the control of lung inflammation. To investigate whether ACE2 functions in PM2.5-induced lung inflammation, wild-type (WT) C57BL/6J mice and ACE2 knock-out (KO) mice were intratracheally instilled with PBS or PM2.5 suspension for 3 consecutive days, respectively. The concentrations of cytokines in bronchoalveolar lavage fluid (BALF) were determined by ELISA. The expression of ACE2 and ACE and activation of inflammatory signaling pathways in lung tissues were evaluated by immunofluorescence staining and Western blotting. We found that PM2.5 exposure increased ACE2 expression. Loss of ACE2 significantly elevated the levels of total proteins, total cells, and the concentrations of MCP-1, IL-1ß in BALF after PM2.5 challenge. Additionally, loss of ACE2 enhanced lung pathologies, airway resistance, and inflammatory signaling activation. Collectively, loss of ACE2 exacerbates PM2.5-induced acute lung injury in mice.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Enzima Convertidora de Angiotensina 2 , Animales , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Material Particulado/metabolismo , Material Particulado/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...