Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129310

RESUMEN

INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.

2.
Toxicol Appl Pharmacol ; 488: 116980, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823456

RESUMEN

Multiple sclerosis (MS) is a class of autoimmune diseases mainly caused by the immune system attacking the myelin sheath of the axons in the nervous system. Although the pathogenesis of MS is complex, studies have shown that dendritic cells (DCs) play a vital role in the pathogenesis of MS. Quercetin (QU) has a unique advantage in clinical application, especially for treating autoimmune diseases. However, the mechanism of QU in the treatment of experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we explore the potential role of QU in EAE. Finally, we find that QU has anti-inflammatory activities and neural protective effects in EAE. The experimental results suggest that the cellular basis for QU's function is to inhibit the activation of DCs while modulating the Th17 cell differentiation in the co-culture system. Further, QU may target STAT4 to inhibit its activation in DCs. This work will be of great significance for the future development and utilization of QU.


Asunto(s)
Células Dendríticas , Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , Quercetina , Factor de Transcripción STAT4 , Células Th17 , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Quercetina/farmacología , Factor de Transcripción STAT4/metabolismo , Femenino , Ratones , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/metabolismo , Diferenciación Celular/efectos de los fármacos , Técnicas de Cocultivo , Antiinflamatorios/farmacología
3.
J Neuroinflammation ; 21(1): 29, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246987

RESUMEN

Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Exosomas , MicroARNs , Vaina de Mielina , Animales , Ratones , Exosomas/metabolismo , Microglía/metabolismo , MicroARNs/genética
4.
Brain Pathol ; 34(1): e13208, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37646624

RESUMEN

The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Humanos , Alelos , Enfermedad de Alzheimer/patología , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Cognición , Fenotipo , Isoformas de Proteínas/genética
5.
Biodivers Data J ; 11: e112020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38312336

RESUMEN

Background: The genus Illiesonemoura Baumann, 1975 (Plecoptera, Nemouridae) is a small-sized stonefly with slender and curved embranous cerci. Currently, 18 species of the genus are known worldwide, mainly distributed in the Palaearctic and Oriental Regions, with a total of two species known to China. New information: Three new species of Illiesonemoura Baumann, 1975, I.bituberculata Wang & Du, sp. nov., I.motuoensis Du & Ji, sp. nov. and I.weii Du & Ji, sp. nov. are described and illustrated, based on male adults from China. Illiesonemourabituberculata is characterised by two pairs of tubercles arising posteromedially from tergum 10 and by two rows of spinules outlining the lateral edge of the ventral sclerite of the epiproct. Illiesonemouramotuoensis is characterised by the heart-shaped epiproct with a thin and slightly sclerotised protrusion between the sclerotised bands. Illiesonemouraweii is characterised by a pair of small knobs on tergum 10, outer lobes of paraprocts basally broad, then slender towards apices with a pointed tip and the epiproct with lateral spinules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA