Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Front Chem ; 12: 1416294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974994

RESUMEN

The fluids near the solid substrate display different properties compared to the bulk fluids owing to the asymmetric interaction between the fluid and substrate; however, to the best of our knowledge, no work has been conducted to determine the interfacial properties of fluids experimentally. In this work, we combined a pycnometer with experimental measurements and data processing to determine the standard thermodynamic properties of interfacial fluids for the first time. In the study, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Hmim][NTf2]) and titanium dioxide (P25) were chosen as the probes to prove the concept. It was found that, with the combination of the Gay-Lussac pycnometer and the colligative law, together with selecting a suitable solvent, it is possible and reliable to determine the standard molar volume of the immobilized [Hmim][NTf2]. Compared to the bulk phase, the molar volumes of [Hmim][NTf2] on the P25 surface reduce by 20.8%-23.7% at temperatures from 293.15 to 323.15 K, and the reduction degrees decrease with increasing temperatures. The newly determined standard thermodynamic data was used to obtain the model parameters of hybrid electrolyte perturbed-chain statistical associating fluid theory density functional theory (ePC-SAFT-DFT), and further predictions of the density of interfacial ionic liquids with different film thicknesses were proved to be reliable in comparison with the experiment results.

2.
Langmuir ; 40(23): 12017-12026, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38804259

RESUMEN

This work combined gold colloid probe atomic force microscopy (AFM) with a quartz crystal microbalance (QCM) to accurately quantify the molecular interactions of fluorine-free phosphonium-based ionic liquids (ILs) with gold electrode surfaces. First, the interactions of ILs with the gold electrode per unit area (FA', N/m2) were obtained via the force-distance curves measured by gold probe AFM. Second, a QCM was employed to detect the IL amount to acquire the equilibrium number of IL molecules adsorbed onto the gold electrode per unit area (NIL, Num/m2). Finally, the quantified molecular interactions of ILs with the gold electrode (F0, nN/Num) were estimated. F0 is closely related to the IL composition, in which the IL with the same anion but a longer phosphonium cation exhibits a stronger molecular interaction. The changes in the quantified interactions of gold with different ILs are consistent with the interactions predicted by the extended Derjaguin-Landau-Verwey-Overbeek theory, and the van der Waals interaction was identified as the major contribution of the overall interaction. The quantified molecular interaction is expected to enable the direct experimental-derived interaction parameters for molecular simulations and provide the virtual design of novel ILs for energy storage applications.

3.
Diabetes Metab Res Rev ; 40(4): e3812, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738481

RESUMEN

AIMS: To evaluate the effectiveness of optical coherence tomography angiography (OCTA) in detecting early intraocular microvascular changes in diabetic patients. MATERIALS AND METHODS: A systematic study search was performed on PubMed, Medline, Embase, and the Cochrane Library, ranging from January 2012 to March 2023. Controlled studies compared diabetes mellitus (DM) patients with non-diabetic retinopathy (NDR) or patients with mild non-proliferative diabetic retinopathy (mild NPDR) to healthy people. These studies included parameters of OCTA such as foveal avascular zone (FAZ), vessel density of superficial capillary plexus (VDscp), vessel density of deep capillary plexus (VDdcp), and peripapillary VD. The relevant effect model was used according to the heterogeneity, and the mean difference and 95% confidence intervals were calculated. RESULTS: A total of 18 studies with 2101 eyes were eventually included in this meta-analysis. Our results demonstrated that early alterations of VDscp, VDdcp, and peripapillary VD in NDR patients had a significant difference compared with healthy people by OCTA (VDscp: WMD = -1.34, 95% CI: -1.99 to -0.68, P < 0.0001. VDdcp: WMD = -2.00, 95% CI: -2.95 to -1.04, P < 0.0001. Peripapillary VD: WMD = -1.07, 95% CI: -1.70 to -0.43, P = 0.0010). However, there was no statistically significant difference in total FAZ between them (WMD = -0.00, 95% CI: -0.02-0.01, P = 0.84). In addition, for patients with mild NPDR, OCTA could illustrate prominent changes in VDscp, VDdcp, and total FAZ compared with healthy people (VDscp: WMD = -6.11, 95% CI: -9.90 to -2.32, P = 0.002. VDdcp: WMD = -4.26, 95% CI: -5.95 to -2.57, P < 0.00001. FAZ: WMD = 0.06, 95% CI: 0.01-0.11, P = 0.03). CONCLUSIONS: In diabetic patients with or without retinopathy, the parameters of OCTA such as VDscp, VDdcp, and peripapillary vessel density were demonstrated as potential biomarkers in monitoring the early alterations of retinal microangiopathy, while total FAZ may have no significant changes in diabetic patients without retinopathy.


Asunto(s)
Retinopatía Diabética , Vasos Retinianos , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Retinopatía Diabética/diagnóstico por imagen , Retinopatía Diabética/etiología , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología , Angiografía con Fluoresceína/métodos , Microvasos/diagnóstico por imagen , Microvasos/patología , Diabetes Mellitus/diagnóstico por imagen , Pronóstico
4.
Langmuir ; 40(16): 8636-8644, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602887

RESUMEN

Owing to the rapid increase in anthropogenic emission of carbon dioxide (CO2) in the atmosphere, which has resulted in a number of global climate challenges, a decrease in CO2 emissions is urgently needed in the current scenario. This study focuses on the development and characterization of composites for carbon dioxide (CO2) separation. The composites consist of two task-specific ionic liquids (TSILs), namely, tetramethylgunidinium imidazole [TMGHIM] and tetramethylgunidinium phenol [TMGHPhO], impregnated in ZIF-8. The performance of CO2 separation, including sorption capacity and selectivity, was evaluated for pristine ZIF-8 and composites of TMGHIM@ZIF-8 and TMGHPhO@ZIF-8. To demonstrate the thermal stability of the material, thermogravimetric analysis (TGA) was performed. Additionally, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were utilized to showcase the crystal structures and morphology. Fourier transform infrared spectroscopy (FTIR) and BET were also utilized to confirm the successful incorporation of TSILs into ZIF-8. The composite synthesized with TMGHIM@ZIF-8 demonstrated superior CO2 sorption performance as compared with TMGHPhO@ZIF-8. This is attributed to its strong attraction toward CO2, resulting in a higher CO2/CH4 selectivity of 110 while pristine MOFs showed 12 that is 9 times higher than that of the pristine ZIF-8. These TSILs@ZIF-8 composites have significant potential in designing sorbent materials for efficient acid gas separation applications.

5.
Langmuir ; 40(17): 9097-9107, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640355

RESUMEN

The concurrent utilization of an adsorbent and absorbent for carbon dioxide (CO2) adsorption with synergistic effects presents a promising technique for CO2 capture. Here, 1-butyl-3-methylimidazole acetate ([Bmim][Ac]), with a high affinity for CO2, and the molecular sieve SAPO-34 were selected. The impregnation method was used to composite the hybrid samples of [Bmim][Ac]/SAPO-34, and the pore structure and surface property of prepared samples were characterized. The quantity and kinetics of the sorbed CO2 for loaded samples were measured using thermogravimetric analysis. The study revealed that SAPO-34 could retain its pristine structure after [Bmim][Ac] loading. The CO2 uptake of the loaded sample was 1.879 mmol g-1 at 303 K and 1 bar, exhibiting a 20.6% rise compared to that of the pristine SAPO-34 recording 1.558 mmol g-1. The CO2 uptake kinetics of the loaded samples were also accelerated, and the apparent mass transfer resistance for CO2 sorption was significantly reduced by 11.2% compared with that of the pure [Bmim][Ac]. The differential scanning calorimetry method revealed that the loaded sample had a lower CO2 desorption heat than that of the pure [Bmim][Ac], and the CO2 desorption heat of the loaded samples was between 30.6 and 40.8 kJ mol-1. The samples exhibited good cyclic stability. This material displays great potential for CO2 capture applications, facilitating the reduction of greenhouse gas emissions.

6.
Nanoscale Horiz ; 9(4): 506-535, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38356335

RESUMEN

Ionic liquids (ILs) are a class of salts existing in the liquid state below 100 °C, possessing low volatility, high thermal stability as well as many highly attractive solvent and electrochemical capabilities, etc., making them highly tunable for a great variety of applications, such as lubricants, electrolytes, and soft functional materials. In many applications, ILs are first either physi- or chemisorbed on a solid surface to successively create more functional materials. The functions of ILs at solid surfaces can differ considerably from those of bulk ILs, mainly due to distinct interfacial layers with tunable structures resulting in new ionic liquid interface layer properties and enhanced performance. Due to an almost infinite number of possible combinations among the cations and anions to form ILs, the diversity of various solid surfaces, as well as different external conditions and stimuli, a detailed molecular-level understanding of their structure-property relationship is of utmost significance for a judicious design of IL-solid interfaces with appropriate properties for task-specific applications. Many experimental techniques, such as atomic force microscopy, surface force apparatus, and so on, have been used for studying the ion structuring of the IL interface layer. Molecular Dynamics simulations have been widely used to investigate the microscopic behavior of the IL interface layer. To interpret and clarify the IL structure and dynamics as well as to predict their properties, it is always beneficial to combine both experiments and simulations as close as possible. In another theoretical model development to bridge the structure and properties of the IL interface layer with performance, thermodynamic prediction & property modeling has been demonstrated as an effective tool to add the properties and function of the studied nanomaterials. Herein, we present recent findings from applying the multiscale triangle "experiment-simulation-thermodynamic modeling" in the studies of ion structuring of ILs in the vicinity of solid surfaces, as well as how it qualitatively and quantitatively correlates to the overall ILs properties, performance, and function. We introduce the most common techniques behind "experiment-simulation-thermodynamic modeling" and how they are applied for studying the IL interface layer structuring, and we highlight the possibilities of the IL interface layer structuring in applications such as lubrication and energy storage.

7.
Chemistry ; 30(5): e202302826, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37857581

RESUMEN

The concept of confining ionic liquids (ILs) in developing quasi-solid-state electrolytes (QSSEs) has been proposed, where ILs are dispersed in polymer networks/backbones and/or filler/host pores, forming the so-called confinement, and great research progress and promising research results have been achieved. In this review, the progress and achievement in developing QSSEs using IL-confinement for lithium metal batteries (LMBs), together with advanced characterizations and simulations, were surveyed, summarized, and analyzed, where the influence of specific parameters, such as IL (type, content, etc.), substrate (type, structure, surface properties, etc.), confinement methods, and so on, was discussed. The confinement concept was further compared with the conventional one in other research areas. It indicates that the IL-confinement in QSSEs improves the performance of electrolytes, for example, increasing the ionic conductivity, widening the electrochemical window, and enhancing the cycle performance of the assembled cells, and being different from those in other areas, that is, the IL-confinement concept in the battery area is in a broad extent. Finally, insights into developing QSSEs in LMBs with the confinement strategy were provided to promote the development and application of QSSE LMBs.

8.
Can Respir J ; 2023: 3291957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074219

RESUMEN

Objective. Dysregulation of epithelial-mesenchymal transition (EMT) in the airway epithelium is associated with airway remodeling and the progression of pulmonary fibrosis. Many treatments have been shown to inhibit airway remodeling and pulmonary fibrosis progression in asthma and chronic obstructive pulmonary disease (COPD) by regulating EMT and have few side effects. This review aimed to describe the development of airway remodeling through the EMT pathway, as well as the potential therapeutic targets in these pathways. Furthermore, this study aimed to review the current research on drugs to treat airway remodeling and their effects on the EMT pathway. Findings. The dysregulation of EMT was associated with airway remodeling in various respiratory diseases. The cytokines released during inflammation may induce EMT and subsequent airway remodeling. Various drugs, including herbal formulations, specific herbal compounds, cytokines, amino acid or protein inhibitors, microRNAs, and vitamins, may suppress airway remodeling by inhibiting EMT-related pathways.


Asunto(s)
Asma , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/tratamiento farmacológico , Remodelación de las Vías Aéreas (Respiratorias) , Asma/tratamiento farmacológico , Transición Epitelial-Mesenquimal/fisiología , Citocinas
9.
Front Psychol ; 14: 1234905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860297

RESUMEN

Introduction: This mixed-methods study investigates the impact of augmented reality (AR) on the development of intercultural competence and L2 (second language) learning motivation among Chinese English as a Foreign Language (EFL) learners. The research comprised forty-eight intermediate-level learners who were randomly assigned to either an experimental group, receiving AR-based language instruction, or a control group, receiving traditional instruction. Methods: Both groups underwent pre- and post-tests to assess their intercultural competence and L2 learning motivation. The experimental group engaged with an AR application, which exposed learners to a variety of cultural scenarios, customs, and norms. Results: The results indicate that the experimental group, exposed to AR-based instruction, demonstrated significantly higher levels of intercultural competence and L2 learning motivation in comparison to the control group. Discussion: Qualitative data analysis further elucidated that AR-based instruction enhanced learners' engagement, motivation, and deepened their cultural understanding. This study highlights the potential of augmented reality as a powerful tool for fostering the development of intercultural competence and L2 learning motivation within the EFL context, suggesting promising opportunities for innovative pedagogical approaches in language education.

10.
Immunobiology ; 228(6): 152731, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37607433

RESUMEN

Food allergies, which lead to life-threatening acute symptoms, are considered an important public health problem. Therefore, it is essential to develop efficient preventive and treatment measures. We developed a crude peanut protein extract (PPE)-induced allergy mouse model to investigate the effects of lycopene on peanut allergy. Mice were divided into four groups: 5 mg/kg lycopene, 20 mg/kg lycopene, no treatment, and control groups. Serum inflammatory factors were detected using enzyme-linked immunosorbent assay. In addition, pathology and immunohistochemistry analyses were used to examine the small intestine of mice. We found that lycopene decreased PPE-specific immunoglobulin E (IgE) and IL-13 levels in the serum, relieved small intestine inflammation, attenuated the production of histamine and mouse mast cell protease-1, and downregulated PI3K and AKT1 expression in the small intestine tissues of mice allergic to peanuts. Our results suggest that lycopene can ameliorate allergy by attenuating the PI3K/AKT pathway and the anaphylactic reactions mediated by PPE-specific IgE.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Ratones , Animales , Arachis/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Licopeno , Ratones Endogámicos BALB C , Hipersensibilidad a los Alimentos/tratamiento farmacológico , Hipersensibilidad al Cacahuete/tratamiento farmacológico , Hipersensibilidad al Cacahuete/patología , Inmunoglobulina E , Alérgenos
11.
Chem Commun (Camb) ; 59(70): 10516-10519, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37555647

RESUMEN

A 30% (w/w) [ImCl][EDA]-based deep eutectic solvent (DES) in water has demonstrated superior gravimetric CO2 uptake with desirable kinetics, lower regeneration enthalpy, and lesser degradation than the industrially popular 30% monoethanolamine (MEA) solution.

12.
J Environ Manage ; 342: 118344, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37320921

RESUMEN

Freshwater biodiversity and ecosystem services might decline due to exposure to chemicals. However, researchers have devoted much attention to the potential risks of emerging contaminants, while placing less effort on historical pollutants, such as the surfactant, linear-alkylbenzene-sulfonate (LAS), which is a major component of widely used synthetic detergents worldwide. In this study, a multilevel risk assessment approach was used to assess risks posed by LAS to aquatic organisms, on a wide spatial scale, based on various assessment endpoints. Additionally, bottom-up approaches were used to assess contributions of LAS source discharges to aquatic environments. Concentrations of LAS in surface waters of China ranged from less than the limit of detection to 14,200 µg/L. The predicted no effect concentration (PNEC) based on adverse effects on reproduction is 15 µg/L, which is slightly less than the PNEC based on other endpoints. 99% of surface waters in Chaohu Lake and the Hai River (Ch: Haihe) were predicted to pose a risk to growth of aquatic organisms, with a protection threshold of 5% of species (HC5). Discharges of LAS were estimated using activity data and emission factors for 280 major cities in the basin. Rural domestic sources were the main source of LAS to surface waters. These outcomes provided a process for developing comprehensive management and control approaches to help researchers and policymakers effectively manage water resources affected by increasing concentrations of LAS.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Ecosistema , Lagos
13.
ACS Appl Mater Interfaces ; 15(21): 25275-25284, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37212432

RESUMEN

As a remarkably powerful analytical technique, surface-enhanced Raman scattering (SERS) continues to find applications from molecular biology and chemistry to environmental and food sciences. In search of reliable and affordable SERS substrates, the development has moved from noble metals to other diverse types of structures, e.g., nano-engineered semiconductor materials, but the cost of the enhancement factors (EF) substantially decreasing. In this work, we employ biocompatible thin films of Ti-Si-Zr-Zn nanometallic glasses as the SERS substrates, while tuning the Zn composition. Aided by quartz crystal microbalance, we find that the composition of 4.3% Zn (Ti-Si-Zr-Zn4.3) gives an ultrasensitive detection of Cytochrome c (Cyt c) with an EF of 1.38 × 104, 10-fold higher than the previously reported EF in the semiconducting metal oxide nanomaterials, such as TiO2, and even comparable to the reported noble-metal-assisted semiconducting tungsten oxide hydrate. Ti-Si-Zr-Zn4.3 exhibits a stronger adhesion force toward Cyt c, which ensures the strong binding of Cyt c to the surface, facilitating the Cyt c adsorption onto the surface and thus enhancing the SERS signal. The high separation efficiency of photoinduced electrons and holes in Ti-Si-Zr-Zn4.3 is also acknowledged for promoting the SERS activity.

14.
Chem Asian J ; 18(11): e202300360, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37144454

RESUMEN

This Special Collection highlights the latest developments in the field of gel electrolytes. In this Editorial, guest editors Haitao Zhang, Du Yuan, Jin Zhao, Xiaoyan Ji, and Yi-Zhou Zhang briefly introduced the research focusing on chemistry and applications of gel electrolytes in this special collection.

15.
Wound Repair Regen ; 31(3): 305-320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36879445

RESUMEN

Diabetic foot ulcers (DFUs) are among the most common complications in patients with diabetes and a leading cause of lower extremity amputation. DFUs are exacerbated by prolonged bacterial infection; therefore, there is an urgent need for effective treatments to alleviate the burden associated with this condition. Although autophagy plays a unique role in pathogen phagocytosis and inflammation, its role in diabetic foot infections (DFIs) remains unclear. Pseudomonas aeruginosa (PA) is the most frequently isolated gram-negative bacterium from DFUs. Here, we evaluated the role of autophagy in ameliorating PA infection in wounds in a diabetic rat model and a bone marrow-derived macrophage (BMDM) hyperglycemia model. Both models were pretreated with or without rapamycin (RAPA) and then infected with or without PA. Pretreatment of rats with RAPA significantly enhanced PA phagocytosis, suppressed wound inflammation, reduced the M1:M2 macrophage ratio, and improved wound healing. In vitro investigation of the underlying mechanisms revealed that enhanced autophagy resulted in decreased macrophage secretion of inflammatory factors such as TNF-α, IL-6, and IL-1ß but increased that of IL-10 in response to PA infection. Additionally, RAPA treatment significantly enhanced autophagy in macrophages by increasing LC3 and beclin-1 levels, which led to altered macrophage function. Furthermore, RAPA blocked the PA-induced TLR4/MyD88 pathway to regulate macrophage polarisation and inflammatory cytokine production, which was validated by RNA interference and use of the autophagy inhibitor 3-methyladenine (3-MA). These findings suggest enhancing autophagy as a novel therapeutic strategy against PA infection to ultimately improve diabetic wound healing.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Infecciones por Pseudomonas , Ratas , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Receptor Toll-Like 4/metabolismo , Pseudomonas aeruginosa , Cicatrización de Heridas , Autofagia/genética , Inflamación/tratamiento farmacológico
16.
Exp Ther Med ; 25(1): 25, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36561622

RESUMEN

TNFα-induced protein 1 (TNFAIP1) serve a role in neurovascular disease. However, the potential role and molecular mechanism of TNFAIP1 in cerebral ischemia-reperfusion (I/R) remains elusive. In the present study, reverse transcription-quantitative PCR and western blotting were used to assess TNFAIP1 mRNA and protein expression levels in PC12 cells. Furthermore, using Cell Counting Kit-8, flow cytometry and western blotting, cell viability and apoptosis were evaluated. Oxidative stress was evaluated using DCFH-DA staining and ELISA was used for assessment of inflammatory factors. Expression of components in the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and ferroptosis were assessed using western blotting analysis and an iron assay kit. TNFAIP1 expression was significantly upregulated in oxygen glucose deprivation and reperfusion (OGD/R)-injured PC12 cells. However, knocking down TNFAIP1 expression restored PC12 cell viability and decreased apoptosis following OGD/R-challenge. Furthermore, TNFAIP1 silencing significantly suppressed OGD/R-induced oxidative stress and inflammatory damage in PC12 cells. TNFAIP1 knockdown inhibited ferroptosis via activation of the Nrf2 signaling pathway in OGD/R-injured PC12 cells. Erastin treatment reversed the beneficial effects of TNFAIP1 knockdown on PC12 cell viability, apoptosis alleviation, oxidative stress and inflammation following OGD/R treatment. These results suggested that TNFAIP1 knockdown could alleviate OGD/R-induced neuronal cell damage by suppressing Nrf2-mediated ferroptosis, which might lay the foundation for the investigation of targeted-therapy for cerebral I/R injury in clinic.

17.
Front Chem ; 10: 983281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451931

RESUMEN

The addition of molecular liquid cosolvents to choline chloride (ChCl)-based deep eutectic solvents (DESs) is increasingly investigated for reducing the inherently high bulk viscosities of the latter, which represent a major obstacle for potential industrial applications. The molar enthalpy of mixing, often referred to as excess molar enthalpy H E-a property reflecting changes in intermolecular interactions upon mixing-of the well-known ChCl/ethylene glycol (1:2 molar ratio) DES mixed with either water or methanol was recently found to be of opposite sign at 308.15 K: Mixing of the DES with water is strongly exothermic, while methanol mixtures are endothermic over the entire mixture composition range. Knowledge of molecular-level liquid structural changes in the DES following cosolvent addition is expected to be important when selecting such "pseudo-binary" mixtures for specific applications, e.g., solvents. With the aim of understanding the reason for the different behavior of selected DES/water or methanol mixtures, we performed classical MD computer simulations to study the changes in intermolecular interactions thought to be responsible for the observed H E sign difference. Excess molar enthalpies computed from our simulations reproduce, for the first time, the experimental sign difference and composition dependence of the property. We performed a structural analysis of simulation configurations, revealing an intriguing difference in the interaction modes of the two cosolvents with the DES chloride anion: water molecules insert between neighboring chloride anions, forming ionic hydrogen-bonded bridges that draw the anions closer, whereas dilution of the DES with methanol results in increased interionic separation. Moreover, the simulated DES/water mixtures were found to contain extended hydrogen-bonded structures containing water-bridged chloride pair arrangements, the presence of which may have important implications for solvent applications.

18.
Huan Jing Ke Xue ; 43(10): 4419-4429, 2022 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-36224128

RESUMEN

Based on data from 839 comparable sections (sites) of the national surface water environmental quality monitoring network from 2012 to 2020, the variation tendency of surface water environmental quality over the past nine years was analyzed. The results showed that the environmental quality of surface water in China has continuously improved, the proportion of Grade Ⅰ-Ⅲ water quality increased steadily, and the proportion of inferior Grade Ⅴ water quality decreased in succession. The annual average concentration of ammonia nitrogen, total phosphorus, and permanganate index all showed a decreasing trend annually; compared with those in 2012, the three indicator concentrations respectively declined 75.9%, 48.2%, and 17.5% by 2020. In Guangxi, Hainan, and Ningxia, the proportion of Grade Ⅰ-Ⅲ water quality sections was maintained at 100%, whereas Hubei and Jiangxi showed a consecutive decreasing trend, and the other provinces showed a consecutive increasing trend. In Guangxi, Hainan, Ningxia, Hunan, and Fujian, the proportion of inferior Grade Ⅴ water quality sections remained at 0, and the other provinces showed a decreasing trend yearly. The annual average concentration of total phosphorus in Guangxi and Jiangxi and the permanganate index in Hubei, Hainan, and Liaoning increased annually, whereas that in the other provinces decreased to varying degrees. The proportion of Grade Ⅰ-Ⅲ water quality sections in Ten Major basins showed a fluctuating upward trend. The proportion of inferior Grade Ⅴ water quality in the Zhejiang and Fujian Slice Rivers was maintained at 0, and the other river basins showed a fluctuating and declining trend. The annual average of the main pollution indicators all decreased to varying degrees. In 2020, 53% of 32 important lakes were eutrophic, which increased 12% compared to that in 2012. On the whole, surface water quality has generally improved in China during the past nine years; especially since the 13th Five-Year Plan period, remarkable achievements have been made in the prevention and control of water pollution. However, there are differences among various provinces and basins, the improvement in water environmental quality is unbalanced and uncoordinated, water resources are distributed unevenly, and the eutrophication trend of lakes and reservoirs is not optimistic. In the future, water resources, water environment, and water ecology should be overall managed, and great attention should be focused on precise pollution control and ecological restoration of surface water.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Amoníaco , China , Monitoreo del Ambiente , Eutrofización , Lagos , Compuestos de Manganeso , Nitrógeno/análisis , Óxidos , Fósforo/análisis , Ríos
19.
Data Brief ; 45: 108592, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36164296

RESUMEN

Distant metastasis is common in ocular uveal melanoma (uveal melanoma, UM) [1], with possible identification of relevant protein markers in peripheral blood [2], [3]. Proteomics analyses serve as a basis for the screening of new target proteins. However, it is difficult to determine whether the relevant proteins in peripheral blood are the same kinesins as those in primary lesions and metastases. Specially in this study, human UM cells (92.1) [4] were inoculated into the back of the eyeball and the brain of inbred line nude mice transplanted with enhanced green fluorescent protein (EGFP) [5], respectively, to simulate the growth of UM in situ and in brain metastases. A database was established as follows: Firstly, the xenograft was taken for monoclonal re-culture and amplification. Then, the cells after amplification (92.1-A in the back of the eyeball and 92.1-B in the brain) and their parent cells (92.1) were subjected to Tandem Mass Tag (TMT)-labeling proteomic analysis and liquid chromatography-mass spectrometry (LC-MS). Covering differential proteomes of three cell lines in a pairwise model, the data could be used to further screen the kinesins that play a vital role in regulating the growth of UM.

20.
Front Pharmacol ; 13: 948852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935843

RESUMEN

Objective: To compare the efficiency of anti-VEGF drugs intravitreal injections(IVI) treatment with or without retinal laser photocoagulation(LPC) for macular edema(ME) secondary to retinal vein occlusion(RVO). Methods: The randomized controlled trials and retrospective studies including anti-VEGF drug IVI combined with retinal LPC and single IVI in the treatment of macular edema secondary to RVO were collected in PubMed, Medline, Embase, Cochrane Library, and Web of Science. We extracted the main outcome indicators including the best corrected visual acuity (BCVA), central macular thickness(CMT), the number of injections and the progress of retinal non-perfusion areas(NPAs) for systematic evaluation, to observe whether IVI + LPC could be more effective on the prognosis of RVO. We use Review Manager 5.4 statistical software to analyze the data Results: 527 articles were initially retrieved. We included 20 studies, with a total of 1387 patients who were divided into the combination(IVI + LPC) treatment group and the single IVI group. All the patients completed the ocular examination including BCVA, slit-lamp test, fundus examination and Optical Coherence Tomography(OCT) test before and after each treatment. There was no statistical difference between the combination treatment group and single IVI group on BCVA(WMD = 0.12,95%CI = -3.54-3.78,p = 0.95),CMT(WMD = -4.40,95%CI = -21.33-12.53,p = 0.61) and NPAs(WMD = 0.01,95%CI = -0.28-0.30,p = 0.94).However, the number of IVI was decreased significantly in the combination treatment group in BRVO patients, compared to that in the single IVI group(WMD = -0.69,95%CI = -1.18∼-0.21,p = 0.005). Conclusion: In the treatment of RVO patients with macular edema, the combination of IVI and retinal LPC neither improves BCVA nor reduces CMT significantly compared with the single IVI treatment. However, the combination treatment can decrease the number of intravitreal injections in patients with BRVO, while it is not observed in CRVO patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...