Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.000
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3714-3724, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099346

RESUMEN

Diabetic cardiomyopathy(DCM) is a chronic complication of diabetes mellitus that leads to cardiac damage in the later stages of the disease, and its pathogenesis is complex, involving metabolic disorders brought about by a variety of aberrant alterations such as endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis, defects in cardiomyocyte Ca~(2+) transporter, and myocardial fibrosis. Currently, there is a lack of specific diagnosis and treatment in the clinic. Autophagy is a highly conserved scavenging mechanism that removes proteins, damaged organelles or foreign contaminants and converts them into energy and amino acids to maintain the stability of the intracellular environment. Inhibition of autophagy can cause harmful metabolites to accumulate in the cell, while over-activation of autophagy can disrupt normal cellular structures and cause cell death. Prolonged high glucose levels disrupt cardiomyocyte autophagy levels and exacerbate the development of DCM. The protective or detrimental effects of autophagy on cells ring true with the traditional Chinese medicine theory of healthy Qi and pathogenic Qi. Autophagy in the physiological state of the removal of intracellular substances and the generation of substances beneficial to the survival of cells is the inhibition of pathogenic Qi to help the performance of healthy Qi, so the organism is healthy. In the early stages of the disease, when autophagy is impaired and incapable of removing waste substances, pathogenic Qi is prevalent; In the later stages of the disease, excessive activation of autophagy can destroy normal cells, leading to a weakening of healthy Qi. Traditional Chinese medicine has the advantage of targeting multiple sites and pathways. Studies in recent years have confirmed that traditional Chinese medicine monomers or formulas can target autophagy, promote the restoration of autophagy levels, maintain mitochondrial and endoplasmic reticulum homeostasis, and reduce oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis in order to prevent and control DCM. This study provides a review of the relationship between autophagy and DCM and the intervention of traditional Chinese medicine in autophagy for the treatment of DCM, with a view to providing new clinical ideas and methods for the treatment of DCM with traditional Chinese medicine.


Asunto(s)
Autofagia , Cardiomiopatías Diabéticas , Medicamentos Herbarios Chinos , Medicina Tradicional China , Autofagia/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/fisiopatología , Humanos , Animales , Medicamentos Herbarios Chinos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos
2.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117859

RESUMEN

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Asunto(s)
Trastorno Depresivo Mayor , Transcriptoma , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Femenino , Masculino , Adulto , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Persona de Mediana Edad , Imagen por Resonancia Magnética , Perfilación de la Expresión Génica
3.
MedComm (2020) ; 5(9): e661, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39156767

RESUMEN

In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-ß-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.

4.
Chronobiol Int ; : 1-13, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132867

RESUMEN

Shift work tolerance (SWT) refers to the ability to adapt to shift work without significant adverse consequences. The present study aimed to examine the individual differences in SWT and their predictors and outcomes. Latent profile analyses were conducted using cross-sectional data collected form 448 Chinese male sailors who experienced a prolonged (>30 d) non-24-h rotating shift schedule at sea. Depression, anxiety, sleep disturbance, fatigue, domestic disruption, job satisfaction, work engagement, digestive and cardiovascular symptoms were included as indicators of SWT. The results showed that there existed 2 latent profiles of SWT named as High SWT group and Low SWT group. High SWT group was characterized by low levels on all negative bio-psycho-social outcomes but high levels of work engagement and job satisfaction, while Low SWT group exhibited completely opposite characteristics compared to High SWT group. The level of hardiness could predict profile membership that those with higher level of hardiness were more likely to belong to High SWT group. However, there were no significant differences observed in job performance between two groups. In conclusion, hardiness can serve as a predictor of personnel selection for shift work and hardiness-based intervention programs should be encouraged among the shift workers.

5.
Org Lett ; 26(32): 6809-6813, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39102516

RESUMEN

Represented herein is the first 1,3-difunctionalization of alkenes via photocatalysis. A single cobaloxime is used to carry out two catalytic cycles in which cobaloxime is used not only as a photocatalyst to initiate the reaction but also as a metal catalyst for the ß-H elimination process. Electron-deficient alkenes, electron-rich alkenes, and unactivated alkenes could be directly converted to 1,3-bisphosphorylated products, even unsymmetric 1,3-bisphosphorylated products, with only H2 as a byproduct under extremely mild reaction conditions.

6.
Org Lett ; 26(32): 6927-6932, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39106055

RESUMEN

Herein is the first example of photocatalytic cross-coupling of alkenes with aldehydes by a single catalyst without an external photosensitizer and any additives. Irradiation of the aromatic aldehyde and cobaloxime catalyst results in the formation of an acyl radical, which undergoes radical addition with alkene or indole and subsequently ß-H elimination to afford alkenyl ketone. The reaction features cheap and readily available raw materials, a broad substrate scope, and mild conditions, even for late-stage derivatization of bioactive compounds.

7.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3441-3451, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041116

RESUMEN

Type 2 diabetes(T2DM) is a metabolic disorder marked by glucose toxicity, lipotoxicity, insulin resistance, and other pathological manifestations, representing a pressing global health concern. Obesity stands out as a pivotal risk factor for T2DM development. When combined with T2DM, obesity exacerbates insulin resistance and metabolic abnormalities. The disturbance in the inflammatory microenvironmental balance between adipose and pancreatic islet tissue emerges as a significant contributor to obese with T2DM development. Macrophages play a crucial role in maintaining immune homeostasis and responding to inflammation in adipose and pancreatic islet tissue. Individuals with obese with T2DM exhibit an imbalanced M1/M2 macrophage polarization, contributing to the progression of glycolipid metabolism abnormalities. Hence, restoring the equilibrium of macrophage polarization becomes imperative for obese with T2DM treatment. Scientific researchers have demonstrated that traditional Chinese medicine(TCM) therapies can effectively modulate macrophage polarization, offering a viable approach for treating obese with T2DM. In light of the existing evidence, this study systematically reviewed the research progress of TCM targeting the balance of M1/M2 macrophage polarization to ameliorate obese with T2DM, so as to furnish evidence supporting the clinical diagnosis and treatment of obese with T2DM with TCM while also contributing to the exploration of the biological basis of obese with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Macrófagos , Obesidad , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/complicaciones , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Animales , Medicina Tradicional China
8.
Exp Cell Res ; 441(2): 114172, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053869

RESUMEN

In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.


Asunto(s)
Envejecimiento , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Humanos , Envejecimiento/metabolismo , Animales , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
9.
J Ethnopharmacol ; 334: 118565, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002821

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps cicadae (C.cicadae), named "Chan Hua", an anamorph of Isaria cicadae Miquel, is an entomogenous complex formed by fungi parasitizing on the larvae of cicadas and belongs to the Claviciptaceae family and the genus Codyceps, which traditionally holds a significant place in Chinese ethnopharmacology, specifically for eye clarity and as a remedy for age-related ocular conditions. The underlying mechanisms contributing to its eyesight enhancement and potential effectiveness against Age-related macular degeneration (AMD) remain unexplored. AIM OF THE STUDY: This study aims to elucidate the protective role of C.cicadae and its active ingredient, Myriocin (Myr), against AMD. MATERIALS AND METHODS: A chemical inducer was employed to make retinal pigment epithelium (RPE) damage in vitro and in vivo. The key ingredients of C.cicadae and their related mechanisms for anti-AMD were studied through bioinformatic analysis and molecular biological approaches. RESULTS: Myr was identified through high-performance liquid chromatography (HPLC) as an active ingredient in C.cicadae, and demonstrated a protective effect on RPE cells, reducing the structural damage and cell death induced by sodium iodate (SI). Further, Myr reduced eyelid secretions in AMD mice and restored their retinal structure and function. The differentially expressed genes (DEGs) in Myr treatment are primarily associated with TNF and Necroptosis signaling pathways. Molecular docking indicated a strong affinity between TNF and Myr. Myr inhibited the TNF signaling pathway thereby reducing the expression of inflammatory factors in ARPE-19 cells. Additionally, Myr had consistent action with the necroptosis inhibitor Necrostatin-1 (Nec-1), inhibited the RIPK1/RIPK3/MLKL pathway thereby protecting ARPE-19 cells. CONCLUSION: The findings present Myr, as a potent protector against SI-induced AMD, predominantly through modulation of the TNF-RIPK1/RIPK3/MLKL signaling pathway, offering the insights of therapeutic C.cicadae as viable candidates for AMD treatment.


Asunto(s)
Cordyceps , Yodatos , Degeneración Macular , Epitelio Pigmentado de la Retina , Factor de Necrosis Tumoral alfa , Animales , Degeneración Macular/tratamiento farmacológico , Cordyceps/química , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Línea Celular , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Masculino , Necroptosis/efectos de los fármacos , Ácidos Grasos Monoinsaturados
10.
Diabetes Metab Syndr Obes ; 17: 2789-2807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072347

RESUMEN

Metabolic reprogramming contributes to the progression and prognosis of various kidney diseases. Glutamine is the most abundant free amino acid in the body and participates in more metabolic processes than other amino acids. Altered glutamine metabolism is a prominent feature in different kidney diseases. Glutaminolysis converts glutamine into the TCA cycle metabolite, alpha-ketoglutarate, via a cascade of enzymatic reactions. This metabolic pathway plays pivotal roles in inflammation, maladaptive repair, cell survival and proliferation, redox homeostasis, and immune regulation. Given the crucial role of glutaminolysis in bioenergetics and anaplerotic fluxes in kidney pathogenesis, studies on this cascade could provide a better understanding of kidney diseases, thus inspiring the development of potential methods for targeted therapy. Emerging evidence has shown that targeting glutaminolysis is a promising therapeutic strategy for ameliorating kidney disease. In this narrative review, equation including keywords related to glutamine, glutaminolysis and kidney are subjected to an exhaustive search on Pubmed database, we identified all relevant articles published before 1 April, 2024. Afterwards, we summarize the regulation of glutaminolysis in major kidney diseases and its underlying molecular mechanisms. Furthermore, we highlight therapeutic strategies targeting glutaminolysis and their potential clinical applications.

11.
Adv Sci (Weinh) ; : e2405677, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994890

RESUMEN

Photoacoustic (PA) emitters are emerging ultrasound sources offering high spatial resolution and ease of miniaturization. Thus far, PA emitters rely on electronic transitions of absorbers embedded in an expansion matrix such as polydimethylsiloxane (PDMS). Here, it is shown that mid-infrared vibrational excitation of C─H bonds in a transparent PDMS film can lead to efficient mid-infrared photoacoustic conversion (MIPA). MIPA shows 37.5 times more efficient than the commonly used PA emitters based on carbon nanotubes embedded in PDMS. Successful neural stimulation through MIPA both in a wide field with a size up to a 100 µm radius and in single-cell precision is achieved. Owing to the low heat conductivity of PDMS, less than a 0.5 °C temperature increase is found on the surface of a PDMS film during successful neural stimulation, suggesting a non-thermal mechanism. MIPA emitters allow repetitive wide-field neural stimulation, opening up opportunities for high-throughput screening of mechano-sensitive ion channels and regulators.

12.
Zool Res ; 45(4): 924-936, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021081

RESUMEN

Amyloid beta (Aß) monomers aggregate to form fibrils and amyloid plaques, which are critical mechanisms in the pathogenesis of Alzheimer's disease (AD). Given the important role of Aß1-42 aggregation in plaque formation, leading to brain lesions and cognitive impairment, numerous studies have aimed to reduce Aß aggregation and slow AD progression. The diphenylalanine (FF) sequence is critical for amyloid aggregation, and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings. In this study, we examined the effects of a moderate-intensity rotating magnetic field (RMF) on Aß aggregation and AD pathogenesis. Results indicated that the RMF directly inhibited Aß amyloid fibril formation and reduced Aß-induced cytotoxicity in neural cells in vitro. Using the AD mouse model APP/PS1, RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments, including exploration and spatial and non-spatial memory abilities. Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation, attenuated microglial activation, and reduced oxidative stress in the APP/PS1 mouse brain. These findings suggest that RMF holds considerable potential as a non-invasive, high-penetration physical approach for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Ratones , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Campos Magnéticos , Modelos Animales de Enfermedad , Placa Amiloide , Encéfalo/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-39041626

RESUMEN

Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance.

14.
Nitric Oxide ; 150: 18-26, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971520

RESUMEN

Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.


Asunto(s)
Sulfuro de Hidrógeno , Enfermedades de la Piel , Sulfuro de Hidrógeno/metabolismo , Humanos , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/metabolismo , Animales , Piel/metabolismo
15.
Phytomedicine ; 132: 155853, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968792

RESUMEN

BACKGROUND: Heat stroke (HS) generated liver injury is a lethal emergency that occurs when the body is exposed to temperatures up to 40 °C for a few hours. PURPOSE: This study aimed to evaluate the therapeutic prospects of Catalpol (CA) from the blood-cooling herb Rehamanniae Radix on liver injury by HS. STUDY DESIGN AND METHODS: A murine HS model (41 ± 0.5 °C, 60 ± 5 % relative humidity) and two cell lines (lipopolysaccharide + 42 °C) were used to assess the protective effects of CA on physiological, pathological, and biochemical features in silico, in vivo, and in vitro. RESULTS: CA treatment significantly improved survival rates in vivo and cell viability in vitro over those of the untreated group. Additionally, CA treatment reduced core body temperature, enhanced survival time, and mitigated liver tissue damage. Furthermore, CA treatment also reduced the activities of AST and ALT enzymes in the serum samples of HS mice. Molecular docking analysis of the 28 overlapping targets between HS and CA revealed that CA has strong binding affinities for the top 15 targets. These targets are primarily involved in nine major signaling pathways, with the JAK-STAT pathway being highly associated with the other eight pathways. Our findings also indicate that CA treatment significantly downregulated the expression of proinflammatory cytokines both in vivo and in vitro while upregulating the expression of anti-inflammatory cytokines. Moreover, CA treatment reduced the levels of JAK2, phospho-STAT5, and phospho-STAT3 both in vivo and in vitro, which is consistent with its inhibition of the apoptotic markers p53, Bcl2, and Bax. CONCLUSIONS: Heat stroke-induced liver injury was inhibited by CA through the downregulation of JAK/STAT signaling.


Asunto(s)
Regulación hacia Abajo , Golpe de Calor , Glucósidos Iridoides , Transducción de Señal , Animales , Glucósidos Iridoides/farmacología , Transducción de Señal/efectos de los fármacos , Golpe de Calor/tratamiento farmacológico , Golpe de Calor/complicaciones , Ratones , Masculino , Regulación hacia Abajo/efectos de los fármacos , Rehmannia/química , Hígado/efectos de los fármacos , Simulación del Acoplamiento Molecular , Factores de Transcripción STAT/metabolismo , Quinasas Janus/metabolismo , Factor de Transcripción STAT3/metabolismo , Modelos Animales de Enfermedad , Janus Quinasa 2/metabolismo
16.
Adv Sci (Weinh) ; : e2403205, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923780

RESUMEN

Neuromodulation is a powerful tool for fundamental studies in neuroscience and potential treatments of neurological disorders. Both photoacoustic (PA) and photothermal (PT) effects are harnessed for non-genetic high-precision neural stimulation. Using a fiber-based device excitable by a nanosecond pulsed laser and a continuous wave laser for PA and PT stimulation, respectively, PA and PT neuromodulation is systematically investigated at the single neuron level. These results show that to achieve the same level of neuron activation recorded by Ca2+ imaging, the laser energy needed for PA stimulation is 1/40 of that needed for PT stimulation. The threshold energy for PA stimulation is found to be further reduced in neurons overexpressing mechano-sensitive channels, indicating direct involvement of mechano-sensitive channels in PA stimulation. Electrophysiology study of single neurons upon PA and PT stimulation is performed by patch clamp recordings. Electrophysiological features induced by PA are distinct from those by PT, confirming that PA and PT stimulation operate through different mechanisms. These insights offer a foundation for the rational design of more efficient and safer non-genetic neural modulation approaches.

17.
Gut Microbes ; 16(1): 2369336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944840

RESUMEN

The role of the intratumoral microbiome in gastric cancer (GC) has not been comprehensively assessed. Here, we explored the relationship between the microbial community and GC prognosis and therapy efficacy. Several cancer-associated microbial characteristics were identified, including increased α-diversity, differential ß-diversity, and decreased Helicobacter pylori abundance. After adjusting for clinical features, prognostic analysis revealed 2 phyla, 14 genera, and 5 species associated with the overall survival of patients with GC. Additionally, 2 phyla, 14 genera, and 6 species were associated with adjuvant chemotherapy (ACT) efficacy in patients with stage II - III GC. Furthermore, we classified GC microbiome structures into three microbial subtypes (MS1, MS2 and MS3) with distinguishing features. The MS1 subtype exhibited high immune activity and enrichment of microbiota related to immunotherapy and butyric acid-producing, as well as potential benefits in immunotherapy. MS2 featured the highest α-diversity and activation of the TFF pathway, MS3 was characterized by epithelial-mesenchymal transition and was associated with poor prognosis and reduced ACT efficacy. Collectively, the results of this study provide valuable insights into the microbial characteristics associated with GC prognosis and therapy efficacy.


Asunto(s)
Neoplasias Gástricas , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/terapia , Humanos , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Microbioma Gastrointestinal , Anciano , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Quimioterapia Adyuvante , Resultado del Tratamiento
18.
Angew Chem Int Ed Engl ; 63(35): e202408163, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38880765

RESUMEN

While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter-propagating mid-infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid-infrared photothermal spectra of label-free and GFP-tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub-micrometer distances, we reveal that huntingtin inclusions partition into a ß-sheet-rich core and a ɑ-helix-rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq-] cells only carry smaller ß-rich non-toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high-throughput structural screenings of macromolecular assemblies.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Agregado de Proteínas , Enfermedad de Huntington/patología , Enfermedad de Huntington/metabolismo , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo
19.
Front Cell Dev Biol ; 12: 1384047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827527

RESUMEN

Autophagy is an evolutionarily conserved cellular recycling process that maintains cellular homeostasis. Despite extensive research in endocrine contexts, the role of autophagy in ovarian and testicular steroidogenesis remains elusive. The significant role of autophagy in testosterone production suggests potential treatments for conditions like oligospermia and azoospermia. Further, influence of autophagy in folliculogenesis, ovulation, and luteal development emphasizes its importance for improved fertility and reproductive health. Thus, investigating autophagy in gonadal cells is clinically significant. Understanding these processes could transform treatments for endocrine disorders, enhancing reproductive health and longevity. Herein, we provide the functional role of autophagy in testicular and ovarian steroidogenesis to date, highlighting its modulation in testicular steroidogenesis and its impact on hormone synthesis, follicle development, and fertility therapies.

20.
Nat Commun ; 15(1): 5374, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918400

RESUMEN

Photothermal microscopy is a highly sensitive pump-probe method for mapping nanostructures and molecules through the detection of local thermal gradients. While visible photothermal microscopy and mid-infrared photothermal microscopy techniques have been developed, they possess inherent limitations. These techniques either lack chemical specificity or encounter significant light attenuation caused by water absorption. Here, we present an overtone photothermal (OPT) microscopy technique that offers high chemical specificity, detection sensitivity, and spatial resolution by employing a visible probe for local heat detection in the C-H overtone region. We demonstrate its capability for high-fidelity chemical imaging of polymer nanostructures, depth-resolved intracellular chemical mapping of cancer cells, and imaging of multicellular C. elegans organisms and highly scattering brain tissues. By bridging the gap between visible and mid-infrared photothermal microscopy, OPT establishes a new modality for high-resolution and high-sensitivity chemical imaging. This advancement complements large-scale shortwave infrared imaging approaches, facilitating multiscale structural and chemical investigations of materials and biological metabolism.


Asunto(s)
Caenorhabditis elegans , Microscopía , Animales , Microscopía/métodos , Humanos , Vibración , Nanoestructuras/química , Encéfalo/diagnóstico por imagen , Polímeros/química , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA