Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Theranostics ; 14(10): 4058-4075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994030

RESUMEN

Background: Knowledge about the pathogenesis of depression and treatments for this disease are lacking. Epigenetics-related circRNAs are likely involved in the mechanism of depression and have great potential as treatment targets, but their mechanism of action is still unclear. Methods: Circular RNA UBE2K (circ-UBE2K) was screened from peripheral blood of patients with major depressive disorder (MDD) and brain of depression model mice through high-throughput sequencing. Microinjection of circ-UBE2K overexpression lentivirus and adeno-associated virus for interfering with microglial circ-UBE2K into the mouse hippocampus was used to observe the role of circ-UBE2K in MDD. Sucrose preference, forced swim, tail suspension and open filed tests were performed to evaluate the depressive-like behaviors of mice. Immunofluorescence and Western blotting analysis of the effects of circ-UBE2K on microglial activation and immune inflammation. Pull-down-mass spectrometry assay, RNA immunoprecipitation (RIP) test and fluorescence in situ hybridization (FISH) were used to identify downstream targets of circ-UBE2K/ HNRNPU (heterogeneous nuclear ribonucleoprotein U) axis. Results: In this study, through high-throughput sequencing and large-scale screening, we found that circ-UBE2K levels were significantly elevated both in the peripheral blood of patients with MDD and in the brains of depression model mice. Functionally, circ-UBE2K-overexpressing mice exhibited worsened depression-like symptoms, elevated brain inflammatory factor levels, and abnormal microglial activation. Knocking down circ-UBE2K mitigated these changes. Mechanistically, we found that circ-UBE2K binds to heterogeneous nuclear ribonucleoprotein U (HNRNPU) to form a complex that upregulates the expression of the parental gene ubiquitin conjugating enzyme E2 K (UBE2K), leading to abnormal microglial activation and neuroinflammation and promoting the occurrence and development of depression. Conclusions: The findings of the present study revealed that the expression of circUBE2K, which combines with HNRNPU to form the circUBE2K/HNRNPU complex, is increased in microglia after external stress, thus regulating the expression of the parental gene UBE2K and mediating the abnormal activation of microglia to induce neuroinflammation, promoting the development of MDD. These results indicate that circ-UBE2K plays a newly discovered role in the pathogenesis of depression.


Asunto(s)
Trastorno Depresivo Mayor , Modelos Animales de Enfermedad , Microglía , ARN Circular , Enzimas Ubiquitina-Conjugadoras , Animales , ARN Circular/genética , ARN Circular/metabolismo , Microglía/metabolismo , Humanos , Ratones , Masculino , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Femenino , Depresión/genética , Depresión/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Adulto , Persona de Mediana Edad
2.
J Hosp Infect ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032564

RESUMEN

BACKGROUND: Midline catheters (MCs) and peripherally inserted central catheters (PICCs) are essential for reliable vascular access in patients. Despite their prevalent use, comparative risk assessments of these catheters, particularly from randomized controlled trials (RCTs), remain scarce. This meta-analysis primarily focuses on RCTs to evaluate and compare the incidence of complications associated with MCs and PICCs. METHODS: We conducted a comprehensive search of databases including the Cochrane Library, PubMed, Embase, Web of Science, ScienceDirect, Scopus, and ProQuest, up to April 2024. The primary outcomes analyzed were total complications and catheter-related bloodstream infections (CRBSIs), while secondary outcomes included catheter dwell time and thrombosis incidence. Meta-analyses were performed using a random-effects model. RESULTS: From 831 initially identified articles, 5 trials involving 608 patients met the inclusion criteria. MCs exhibited a significantly higher rate of total complications compared to PICCs (relative risk = 1.95, 95% confidence interval = 1.23-3.08, p = 0.005, I2= 0%). MCs also had shorter dwell times and a higher incidence of premature removal. However, no significant differences were observed in the rates of CRBSIs or thrombosis between MCs and PICCs. CONCLUSIONS: PICCs are associated with fewer total complications and longer dwell times compared to MCs, which tend to be more often removed prematurely. Thrombosis rates were similar between the two catheter types, underscoring the need for careful catheter selection based on specific patient conditions and treatment duration. Further research, particularly additional randomized controlled trials, is necessary to confirm these findings and guide optimal catheter selection in clinical practice.

3.
BMC Musculoskelet Disord ; 25(1): 540, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997743

RESUMEN

BACKGROUND: Extracellular matrix (ECM) remodeling in skeletal muscle is a significant factor in the development of sarcopenia. This study aims to evaluate changes in ECM remodeling in the lumbar paravertebral muscles of sarcopenic rats using diffusion-tensor magnetic resonance imaging (DT-MRI) and compare them with histology. METHODS: Twenty 6-month-old female Sprague Dawley rats were randomly divided into the dexamethasone (DEX) group and the control (CON) group. Both groups underwent 3.0T MRI scanning, including Mensa, T2WI, and DT-MRI sequences. The changes in muscle fibers and extracellular matrix (ECM) of the erector spinal muscle were observed using hematoxylineosin and sirius red staining. The expressions of collagen I, III, and fibronectin in the erector spinae were detected by western blot. Pearson correlation analysis was employed to assess the correlation between MRI quantitative parameters and corresponding histopathology markers. RESULTS: The cross-sectional area and fractional anisotropy values of the erector spinae in the DEX group rats were significantly lower than those in the CON group (p < 0.05). Hematoxylin eosin staining revealed muscle fiber atrophy and disordered arrangement in the DEX group, while sirius red staining showed a significant increase in collagen volume fraction in the DEX group. The western blot results indicate a significant increase in the expression of collagen I, collagen III, and fibronectin in the DEX group (p < 0.001 for all). Correlation coefficients between fractional anisotropy values and collagen volume fraction, collagen I, collagen III, and fibronectin were - 0.71, -0.94, -0.85, and - 0.88, respectively (p < 0.05 for all). CONCLUSIONS: The fractional anisotropy value is strongly correlated with the pathological collagen volume fraction, collagen I, collagen III, and fibronectin. This indicates that DT-MRI can non-invasively evaluate the changes in extracellular matrix remodeling in the erector spinal muscle of sarcopenia. It provides a potential imaging biomarker for the diagnosis of sarcopenia.


Asunto(s)
Matriz Extracelular , Ratas Sprague-Dawley , Sarcopenia , Animales , Femenino , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Ratas , Sarcopenia/diagnóstico por imagen , Sarcopenia/metabolismo , Sarcopenia/patología , Imagen de Difusión Tensora/métodos , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/patología , Músculos Paraespinales/metabolismo , Fibronectinas/metabolismo , Modelos Animales de Enfermedad , Dexametasona
4.
Pest Manag Sci ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984846

RESUMEN

BACKGROUND: Elucidating fitness cost associated with field-evolved insect resistance to insecticide is of particular importance to current sustainable pest control. The global pest whitefly Bemisia tabaci has developed resistance to many members of neonicotinoids, but little is known about whitefly resistance to neonicotinoid nitenpyram and its associated fitness cost. Using insecticide bioassay and life-table approach, this study aims to investigate nitenpyram resistance status in field-collected whitefly populations, and to explore whether such resistance is accompanied by a fitness cost. RESULTS: The bioassay results revealed that 14 of 29 whitefly populations displayed moderate to extremely high resistance to nitenpyram, demonstrating a widespread field-evolved resistance to nitenpyram. This field-evolved resistance in the whitefly has increased gradually over the past 3 years from 2021 to 2023. Further life-table study showed that two resistant whitefly populations exhibited longer developmental time, shorter lifespans of adult, and lower fecundity compared with the most susceptible population. The relative fitness cost of the two resistant populations was calculated as 0.69 and 0.56 by using net productive rate R0, which suggests that nitenpyram resistance comes with fitness cost in the whitefly, especially on reproduction. CONCLUSION: Overall, these results represent field-evolved high resistance to nitenpyram in the whitefly. The existing fitness costs associated with nitenpyram resistance are helpful to propose a suitable strategy for sustainable control of whiteflies by rotation or mixture of insecticide with different modes of action. © 2024 Society of Chemical Industry.

6.
Opt Express ; 32(8): 13249-13265, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859300

RESUMEN

Structured light 3D imaging systems commonly employ panel-based projectors or 1-axis MEMS mirrors with beam expander lens to project multi-frame barcodes or dot clouds, addressing challenges posed by objects with multi-scale feature sizes. However, these methods often result in large system volumes due to the required projection multi-lens modules, high hardware costs, or limited light pattern generation capabilities that hindering measurement precision enhancement. This paper introduces an innovative approach to reconfigurable spatial light pattern projection using a single bi-axial MEMS mirror with Lissajous scanning. In contrast to the pixel-by-pixel pre-defined image patterns encoding of conventional 2D laser beam scanning, the proposed method simply aligns the MEMS bi-axial resonance frequencies with laser pulse modulation, enabling the projection of diverse structured light patterns such as stripes, lines, dot matrices, and random dot clouds, which can adapt to different 3D imaging algorithms demands. It eliminates the need for multi-frame encoding and streamlines data caching, simplifies digital logic hardware. A prototype 3D imaging system was developed to demonstrate the mathematical model for laser modulation and the technical feasibility based on the proposed principle. Beyond its lens-free essence, the system supports focal-free optics and a compact projection form factor, which accommodates to a broad range of projection distances and field-of-views based on object's location. 3D depth map of polynomial surface and blocks objects are extracted through single-frame pattern projection with a relative high accuracy. The presented modulation theory for diverse structured light pattern generation opens avenues for versatile and compact 3D imaging applications of LiDAR and robotic 3D vision.

7.
ACS Omega ; 9(21): 22532-22542, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38826536

RESUMEN

The hydrochemical characteristics of groundwater are of great significance for studying the source, development, and utilization of groundwater. This study investigated the characteristics of anions and cations, total dissolved solids (TDS), hydrochemical types, and hydrogen and oxygen isotopes of surface water and groundwater in the Balasu coalfield. By conducting experiments using inductively coupled plasma emission electron spectrometry, ion chromatography, acid-base titration, and gravimetric analysis, the characteristics of ion concentration and TDS in different aquifers were analyzed to determine the possible source of groundwater in C2 (number 2 coal seam in Yan'an Formation). The Piper trilinear diagram was used to determine the hydrochemical types of aquifers, and the source of groundwater was determined based on the stable isotope characteristics of hydrogen and oxygen. The changes in ion, TDS, hydrogen, and oxygen isotopes of surface water and groundwater were analyzed, and the groundwater differences between the two sets of coal seams were compared. The research results indicate that the groundwater in C2 (number 2 coal seam in Yan'an Formation) is caused by the original sedimentary water and the infiltration of Zhiluo Formation and A1 (strata at the top of the Yan'an Formation to number 2 coal seam). However, C4 (number 3 coal seam in Yan'an Formation) is hindered by the well-developed mudstone in A3 (bottom of number 2 coal seam to the top of number 3 coal seam), which hinders the infiltration of groundwater. The study emphasizes that the overlying strata can have a significant impact on the coal seam when the moisture content is high and there is a lack of overlap, thereby promoting changes in the moisture content of the coal seam. This study provides some insights into the safety of coal mines, especially in mining areas with a high coal seam moisture content.

8.
Opt Express ; 32(4): 4944-4953, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439233

RESUMEN

Single-frequency fiber lasers at S-, C-, and L-bands play a crucial role in various applications such as optical network expansion, high-precision metrology, coherent lidar, and atomic physics. However, compared to the C-band, the S- and L-bands have wavelength deviations and suffer from excited-state absorption, which limits the output performance. To address this issue, a strategy called ion hybridization has been proposed to increase the differences in site locations of rare earth (RE) ions in the laser matrix, thereby achieving a broader gain bandwidth. This strategy has been applied to an Er3+/Yb3+ co-doped modified phosphate fiber (EYMPF), resulting in gain coefficients per unit length greater than 2 dB/cm at S-, C-, and L-bands. To demonstrate its capabilities, several centimeter-long EYMPFs have been used to generate single-frequency laser outputs at S-, C- and L-bands with kHz-linewidths, high signal-to-noise ratios (>70 dB), and low relative intensity noise (<-130 dB/Hz) in a compact short linear-cavity configuration.

9.
J Agric Food Chem ; 72(10): 5153-5164, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427964

RESUMEN

Being a destructive pest worldwide, the whitefly Bemisia tabaci has evolved resistance to neonicotinoid insecticides. The third-generation neonicotinoid dinotefuran has commonly been applied to the control of the whitefly, but its underlying mechanism is currently unknown. On the base of our transcriptome data, here we aim to investigate whether the cytochrome P450 CYP6EM1 underlies dinotefuran resistance in the whitefly. Compared to the susceptible strain, the CYP6EM1 gene was found to be highly expressed in both laboratory and field dinotefuran-resistant populations. Upon exposure to dinotefuran, the mRNA levels of CYP6EM1 were increased. These results demonstrate the involvement of this gene in dinotefuran resistance. Loss and gain of functional studies in vivo were conducted through RNAi and transgenic Drosophila melanogaster assays, confirming the role of CYP6EM1 in conferring such resistance. In a metabolism assay in vitro, the CYP6EM1 protein could metabolize 28.11% of dinotefuran with a possible dinotefuran-dm-NNO metabolite via UPLC-QTOF/MS. Docking of dinotefuran to the CYP6EM1 protein showed a good binding affinity, with an energy of less than -6.0 kcal/mol. Overall, these results provide compelling evidence that CYP6EM1 plays a crucial role in the metabolic resistance of B. tabaci to dinotefuran. Our work provides new insights into the mechanism underlying neonicotinoid resistance and applied knowledge that can contribute to sustainable control of a global pest such as whitefly.


Asunto(s)
Guanidinas , Hemípteros , Insecticidas , Animales , Hemípteros/metabolismo , Drosophila melanogaster/metabolismo , Resistencia a los Insecticidas/genética , Neonicotinoides/metabolismo , Nitrocompuestos/metabolismo , Insecticidas/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo
10.
Sci Total Environ ; 923: 171312, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423319

RESUMEN

The persistent and increasing levels of sulfate due to a variety of human activities over the last decades present a widely concerning environmental issue. Understanding the controlling factors of groundwater sulfate and predicting sulfate concentration is critical for governments or managers to provide information on groundwater protection. In this study, the integration of self-organizing map (SOM) approach and machine learning (ML) modeling offers the potential to determine the factors and predict sulfate concentrations in the Huaibei Plain, where groundwater is enriched with sulfate and the areas have complex hydrogeological conditions. The SOM calculation was used to illustrate groundwater hydrochemistry and analyze the correlations among the hydrochemical parameters. Three ML algorithms including random forest (RF), support vector machine (SVM), and back propagation neural network (BPNN) were adopted to predict sulfate levels in groundwater by using 501 groundwater samples and 8 predictor variables. The prediction performance was evaluated through statistical metrics (R2, MSE and MAE). Mine drainage mainly facilitated increase in groundwater SO42- while gypsum dissolution and pyrite oxidation were found another two potential sources. The major water chemistry type was Ca-HCO3. The dominant cation was Na+ while the dominant anion was HCO3-. There was an intuitive correlation between groundwater sulfate and total dissolved solids (TDS), Cl-, and Na+. By using input variables identified by the SOM method, the evaluation results of ML algorithms showed that the R2, MSE and MAE of RF, SVM, BPNN were 0.43-0.70, 0.16-0.49 and 0.25-0.44. Overall, BPNN showed the best prediction performance and had higher R2 values and lower error indices. TDS and Na+ had a high contribution to the prediction accuracy. These findings are crucial for developing groundwater protection and remediation policies, enabling more sustainable management.

11.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377137

RESUMEN

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Asunto(s)
Hemípteros , Insecticidas , Receptores Nicotínicos , Animales , Receptores Nicotínicos/genética , Insecticidas/farmacología , Hemípteros/genética , Drosophila melanogaster , Neonicotinoides/farmacología , Mutación
12.
Hepatobiliary Pancreat Dis Int ; 23(1): 4-13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37580228

RESUMEN

BACKGROUND: Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis. Although primary prevention drugs, including non-selective ß-blockers, have effectively reduced the incidence of bleeding, their efficacy is limited due to side effects and related contraindications. With recent advances in precision medicine, precise drug treatment provides better treatment efficacy. DATA SOURCES: Literature search was conducted in PubMed, MEDLINE and Web of Science for relevant articles published up to May 2022. Information on clinical trials was obtained from https://clinicaltrials.gov/ and http://www.chictr.org.cn/. RESULTS: The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs. According to the site of action, these drugs could be classified into four classes: intrahepatic, extrahepatic, both intrahepatic and extrahepatic targets and others. All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension. CONCLUSIONS: This review classified and summarized the promising drugs, which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension, demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.


Asunto(s)
Várices Esofágicas y Gástricas , Hipertensión Portal , Várices , Humanos , Várices Esofágicas y Gástricas/etiología , Várices Esofágicas y Gástricas/prevención & control , Hemorragia Gastrointestinal/etiología , Hemorragia Gastrointestinal/prevención & control , Hipertensión Portal/complicaciones , Hipertensión Portal/tratamiento farmacológico , Cirrosis Hepática/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Prevención Primaria
13.
Pest Manag Sci ; 80(2): 341-354, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688583

RESUMEN

BACKGROUND: Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a major agricultural insect pest that causes severe economic losses worldwide. Several insecticides have been applied to effectively control this key pest. However, owing to the indiscriminate use of chemical insecticides, B. tabaci has developed resistance against these chemical compounds over the past several years. RESULTS: From 2019 to 2021, 23 field samples of B. tabaci were collected across China. Twenty species were identified as the Mediterranean 'Q' type (MED) and three were identified as MED/ Middle East-Asia Minor 1 mixtures. Subsequently, resistance of the selected populations to different insecticides was evaluated. The results showed that 13 populations developed low levels of resistance to abamectin. An overall upward trend in B. tabaci resistance toward spirotetramat, cyantraniliprole and pyriproxyfen was observed. In addition, resistance to thiamethoxam remained low-to-moderate in the 23 field populations. CONCLUSION: These findings suggest that the overall resistance of the field-collected B. tabaci populations has shown an upward trend over the years in China. We believe our study can provide basic data to support integrated pest management and insecticide resistance management of field B. tabaci in China. © 2023 Society of Chemical Industry.


Asunto(s)
Hemípteros , Insecticidas , Animales , Insecticidas/farmacología , Resistencia a los Insecticidas , China , Tiametoxam
14.
Pest Manag Sci ; 80(2): 910-921, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822143

RESUMEN

BACKGROUND: Understanding the trade-offs between insecticide resistance and the associated fitness is of particular importance to sustainable pest control. One of the most devastating pest worldwide, the whitefly Bemisia tabaci, has developed resistance to various insecticides, especially the neonicotinoid group. Although neonicotinoid resistance often is conferred by P450s-mediated metabolic resistance, the relationship between such resistance and the associated fitness phenotype remains largely elusive. By gene cloning, quantitative reverse transcription (qRT)-PCR, RNA interference (RNAi), transgenic Drosophila melanogaster, metabolism capacity in vitro and 'two sex-age stage' life table study, this study aims to explore the molecular role of a P450 gene CYP4CS5 in neonicotinoid resistance and to investigate whether such resistance mechanism carries fitness costs in the whitefly. RESULTS: Our bioassay tests showed that a total of 13 field-collected populations of B. tabaci MED biotype displayed low-to-moderate resistance to thiamethoxam and clothianidin. Compared to the laboratory susceptible strain, we then found that an important P450 CYP4CS5 was remarkably upregulated in the field resistant populations. Such overexpression of CYP4CS5 had a good match with the resistance level among the whitefly samples. Further exposure to the two neonicotinoids resulted in an increase in CYP4CS5 expression. These results implicate that overexpression of CYP4CS5 is closely correlated with thiamethoxam and clothianidin resistance. RNAi knockdown of CYP4CS5 increased mortality of the resistant and susceptible populations after treatment with thiamethoxam and clothianidin in bioassay, but obtained an opposite result when using a transgenic line of D. melanogaster expressing CYP4CS5. Metabolic assays in vitro revealed that CYP4CS5 exhibited certain capacity of metabolizing thiamethoxam and clothianidin. These in vivo and in vitro assays indicate an essential role of CYP4CS5 in conferring thiamethoxam and clothianidin resistance in whitefly. Additionally, our life-table analysis demonstrate that the field resistant whitefly exhibited a prolonged development time, shortened longevity and reduced fecundity compared to the susceptible, suggesting an existing fitness cost as a result of the resistance. CONCLUSION: Collectively, in addition to the important role of CYP4CS5 in conferring thiamethoxam and clothianidin resistance, this resistance mechanism is associated with fitness costs in the whitefly. These findings not only contribute to the development of neonicotinoids resistance management strategies, but also provide a new target for sustainable whitefly control. © 2023 Society of Chemical Industry.


Asunto(s)
Guanidinas , Hemípteros , Insecticidas , Tiazoles , Animales , Tiametoxam/metabolismo , Drosophila melanogaster/genética , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Oxazinas , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Animales Modificados Genéticamente , Resistencia a los Insecticidas/genética
15.
Exp Gerontol ; 183: 112322, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37929293

RESUMEN

BACKGROUND: Severe sarcopenia may result in severe disability. Early diagnosis is currently the key to enhancing the treatment of sarcopenia, and there is an urgent need for a highly sensitive and dependable tool to evaluate the course of early sarcopenia in clinical practice. This study aims to investigate longitudinally the early diagnosability of magnetic resonance imaging (MRI)-based fat infiltration and blood flow perfusion technology in sarcopenia progression. METHODS: 48 Sprague-Dawley rats were randomly assigned into six groups that were based on different periods of dexamethasone (DEX) injection (0, 2, 4, 6, 8, 10 days). Multimodal MRI was scanned to assess muscle mass. Grip strength and swimming exhaustion time of rats were measured to assess muscle strength and function. Immunofluorescence staining for CD31 was employed to assess skeletal muscle capillary formation, and western blot was used to detect vascular endothelial growth factor-A (VEGF-A) and muscle ring finger-1 (MuRF-1) protein expression. Subsequently, we analyzed the correlation between imaging and histopathologic parameters. A receiver operating characteristic (ROC) analysis was conducted to assess the effectiveness of quantitative MRI parameters for discriminating diagnosis in both pre- and post-modeling of DEX-induced sarcopenic rats. RESULTS: Significant differences were found in PDFF, R2* and T2 values on day 2 of DEX-induction compared to the control group, occurring prior to the MRI-CSA values and limb grip strength on day 6 of induction and swimming exhaustion time on day 8 of induction. There is a strong correlation between MRI-CSA with HE-CSA values (r = 0.67; p < 0.001), oil red O (ORO) area with PDFF (r = 0.67; p < 0.001), microvascular density (MVD) (r = -0.79; p < 0.001) and VEGF-A (r = -0.73; p < 0.001) with R2*, MuRF-1 with MRI-CSA (r = -0.82; p < 0.001). The AUC of PDFF, R2*, and T2 values used for modeling evaluation are 0.81, 0.93, and 0.98, respectively. CONCLUSION: Imaging parameters PDFF, R2*, and T2 can be used to sensitively evaluate early pathological changes in sarcopenia. The successful construction of a sarcopenia rat model can be assessed when PDFF exceeds 1.25, R2* exceeds 53.85, and T2 exceeds 33.88.


Asunto(s)
Sarcopenia , Ratas , Animales , Sarcopenia/diagnóstico por imagen , Sarcopenia/patología , Factor A de Crecimiento Endotelial Vascular , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/patología , Ratas Sprague-Dawley , Imagen por Resonancia Magnética/métodos , Perfusión , Diagnóstico Precoz
16.
Pestic Biochem Physiol ; 196: 105635, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945266

RESUMEN

The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.


Asunto(s)
Hemípteros , Insecticidas , Animales , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Hemípteros/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Resistencia a los Insecticidas/genética , Uridina Difosfato/metabolismo
17.
Opt Express ; 31(21): 35164-35177, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859254

RESUMEN

MEMS Laser beam scanning (LBS) has been identified as a key advancement for augmented reality (AR) displays due to its ability to create compact optical systems that generate bright, high-contrast images with minimal heat dissipation. This innovation can be attributed to the focus-free, efficient light-on-demand pixel projection mechanisms integral to LBS. The LBS, specifically in Lissajous-mode, outperforms the raster-mode in terms of larger scan angles and stability to external vibrations, by leveraging a MEMS mirror operating at bi-axial resonance. However, it tends to be hampered by small mirror aperture, low fill-factor, and inconsistent uniformity of image projection. In this research, a unique gimbal-less Lissajous MEMS scanner was proposed. It employs a bi-axial high frequency of 12,255 Hz and 7,182 Hz to achieve a resolution of 640 × 360 pixels and a video refresh rate of 57 Hz, all while maintaining a high image fill factor of 85.11%. The robust structure of the mirror is proven to sustain stable scanning under broad spectrum of external vibration disturbance up to 2,000 Hz. Furthermore, the large mirror diameter of 2 mm improves refined pixel projection and increased optical etendue for exit pupil. Mathematic model of Lissajous pixel-cells and image reconstruction simulation were established to validate the LBS's ability to generate a uniform and densely pixelated visual effect that fits for typical AR head-up display (AR-HUD). In a pioneering move, performance metric of figure-of-merit was defined to evaluate AR light-engines using varied picture-generation techniques, laying a foundation for guiding future AR system development.

18.
Biomed Pharmacother ; 167: 115567, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742602

RESUMEN

Brusatol (Bru), a bioactive compound found in Brucea sumatrana, exerts antitumour effects on several malignancies. However, the role and molecular mechanism of Bru in squamous cell carcinoma of the oesophagus (ESCC) remain unclear. Here, we found that Bru decreased the survival of ESCC cells. Subsequently, the ferroptosis inhibitors, deferoxamine and liproxstatin-1, rescued Bru-induced cell death, indicating that ferroptosis plays a major role in Bru-induced cell death. Furthermore, Bru promoted lipid peroxidation, glutathione (GSH) depletion, and ferrous iron overload in vitro. Consistent with these in vitro results, Bru significantly inhibited tumour growth in KYSE150 xenograft nude mice by triggering ferroptosis. Mechanistically, nuclear factor E2-related factor 2 (NRF2) inactivation via increased ubiquitin-proteasome degradation was found to be a vital determinant of ferroptosis induced by Bru. Notably, Bru significantly decreases GSH synthesis, iron storage, and efflux by downregulating the expression of NRF2 target genes (glutamate-cysteine ligase catalytic subunit (GCLC), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH1), and solute carrier family 40 member 1 (SLC40A1)), resulting in the accumulation of lethal lipid-based reactive oxygen species (ROS) and intracellular enrichment of chelated iron. Taken together, our findings indicate that ferroptosis is a novel mechanism underlying Bru-induced antitumour activity and will hopefully provide a valuable compound for ESCC treatment.

19.
Pestic Biochem Physiol ; 194: 105468, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532309

RESUMEN

High level resistance for a variety of insecticides has emerged in Bemisia tabaci, a globally notorious insect. Neonicotinoid insecticides have been applied widely to control B. tabaci. Whether a differentially expressed gene CYP6DB3 discovered from transcriptome data of B. tabaci is involved in the resistance to neonicotinoid insecticides remains unclear. In the study, CYP6DB3 expression was significantly up-regulated in both thiamethoxam- and imidacloprid-resistant strains relative to the susceptive strains. We also found that CYP6DB3 expression was up-regulated after B. tabaci adults were exposed to thiamethoxam and imidacloprid. Moreover, knocking down CYP6DB3 expression via feeding corresponding dsRNA significantly reduced CYP6DB3 mRNA levels by 34.1%. Silencing CYP6DB3 expression increased the sensitivity of B. tabaci Q adults against both thiamethoxam and imidacloprid. Overexpression of CYP6DB3 gene reduced the toxicity of imidacloprid and thiamethoxam to transgenic D. melanogaster. In addition, metabolic studies showed that CYP6DB3 can metabolize 24.41% imidacloprid in vitro. Collectively, these results strongly support that CYP6DB3 plays an important role in the resistance of B. tabaci Q to imidacloprid and thiamethoxam. This work will facilitate a deeper insight into the part of cytochrome P450s in the evolution of insecticide resistance and provide a theoretical basis for the development of new integrated pest resistance management.


Asunto(s)
Hemípteros , Insecticidas , Animales , Tiametoxam/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Drosophila melanogaster/metabolismo , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Resistencia a los Insecticidas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
20.
Pestic Biochem Physiol ; 194: 105469, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532310

RESUMEN

Bemisia tabaci (Hemiptera: Gennadius) is a notorious pest that is capable of feeding on >600 kinds of agricultural crops. Imidacloprid is critical in managing pest with sucking mouthparts, such as B. tabaci. However, the field population of B. tabaci has evolved resistance because of insecticide overuse. The overexpression of the detoxification enzyme cytochrome P450 monooxygenase is considered the main mechanism of imidacloprid resistance, but the mechanism underlying gene regulation remains unclear. MicroRNAs are a type of endogenous small molecule compounds that is fundamental in regulating gene expression at the post-transcriptional level. Whether miRNAs are related to the imidacloprid resistance of B. tabaci remains unknown. To gain deep insight into imidacloprid resistance, we conducted on miRNAs expression profiling of two B. tabaci Mediterranean (MED) strains with 19-fold resistance through deep sequencing of small RNAs. A total of 8 known and 1591 novel miRNAs were identified. In addition, 16 miRNAs showed significant difference in expression levels between the two strains, as verified by quantitative reverse transcription PCR. Among these, novel_miR-376, 1517, and 1136 significantly expressed at low levels in resistant samples, decreasing by 36.9%, 60.2%, and 15.6%, respectively. Moreover, modulating novel_miR-1517 expression by feeding with 1517 inhibitor and 1517 mimic significantly affected B. tabaci imidacloprid susceptibility by regulating CYP6CM1 expression. In this article, miRNAs related to imidacloprid resistance of B. tabaci were systematically screened and identified, providing important information for the miRNA-based technological innovation for this pest management.


Asunto(s)
Hemípteros , Insecticidas , MicroARNs , Animales , Hemípteros/metabolismo , Resistencia a los Insecticidas/genética , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA