Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
ACS Nano ; 18(11): 8157-8167, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456777

RESUMEN

Perovskite light-emitting diodes (PeLEDs) are the next promising display technologies because of their high color purity and wide color gamut, while two classical emitter forms, i.e., polycrystalline domains and quantum dots, are encountering bottlenecks. Weak carrier confinement of large polycrystalline domains leads to inadequate radiative recombination, and surface ligands on quantum dots are the main annihilation sites for injected carriers. Here, pinpointing these issues, we screened out an amphoteric agent, namely, 2-(2-aminobenzoyl)benzoic acid (2-BA), to precisely control the in situ growth of FAPbI3 (FA: formamidine) nanodomains with enhanced space confinement, preferred crystal orientation, and passivated trap states on the transport-layer substrate. The amphoteric 2-BA performs bidentate chelating functions on the formation of ultrasmall perovskite colloids (<1 nm) in the precursor, resulting in a smoother FAPbI3 emitting layer. Based on monodispersed and homogeneous nanodomain films, a near-infrared PeLED device with a champion efficiency of >22% plus enhanced T80 operational stability was achieved. The proposed perovskite nanodomain film tends to be a mainstream emitter toward the performance breakthrough of PeLED devices covering visible wavelengths beyond infrared.

2.
Biochem Genet ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315264

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is a leading kidney disease, clinically associated with proteinuria and progressive renal failure. The occurrence of this disease is partly related to gene mutations. We describe a single affected family member who presented with FSGS. We used high-throughput sequencing, sanger sequencing to identify the pathogenic mutations, and a systems genetics analysis in the BXD mice was conducted to explore the genetic regulatory mechanisms of pathogenic genes in the development of FSGS. We identified high urinary protein (++++) and creatinine levels (149 µmol/L) in a 29-year-old male diagnosed with a 5-year history of grade 2 hypertension. Histopathology of the kidney biopsy showed stromal hyperplasia at the glomerular segmental sclerosis and endothelial cell vacuolation degeneration. Whole-exome sequencing followed by Sanger sequencing revealed a heterozygous missense mutation (c.643C > T) in exon 2 of TRPC6, leading to the substitution of arginine with tryptophan at position 215 (p.Arg215Trp). Systems genetics analysis of the 53 BXD mice kidney transcriptomes identified Pygm as the upstream regulator of Trpc6. Those two genes are jointly involved in the regulation of FSGS mainly via Wnt and Hippo signaling pathways. We present a novel variant in the TRPC6 gene that causes FSGS. Moreover, our data suggested TRPC6 works with PYGM, as well as Wnt and Hippo signaling pathways to regulate renal function, which could guide future clinical prevention and targeted treatment for FSGS outcomes.

3.
Small ; : e2310478, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334247

RESUMEN

Addressing the challenge of lighting stability in perovskite white light emitting diodes (WLEDs) is crucial for their commercial viability. CsPbX3 (X = Cl, Br, I, or mixed) nanocrystals (NCs) are promising for next-generation lighting due to their superior optical and electronic properties. However, the inherent soft material structure of CsPbX3 NCs is particularly susceptible to the elevated temperatures associated with prolonged WLED operation. Additionally, these NCs face stability challenges in high humidity environments, leading to reduced lighting performance. This study introduces a two-step dual encapsulation method, resulting in CsPbBr3 @SiO2 /Al2 SiO5 composite fibers (CFs) with enhanced optical stability under extreme conditions. In testing, WLEDs incorporating these CFs, even under prolonged operation at high power (100 mA for 9 h), maintain consistent electroluminescence (EL) intensity and optoelectronic parameters, with surface temperatures reaching 84.2 °C. Crucially, when subjected to 85 °C and 85% relative humidity for 200 h, the WLEDs preserve 97% of their initial fluorescence efficiency. These findings underscore the efficacy of the dual encapsulation strategy in significantly improving perovskite material stability, marking a significant step toward their commercial application in optoelectronic lighting.

4.
Nanoscale ; 16(4): 1539-1576, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38170865

RESUMEN

The development of advanced cathode materials for zinc-ion batteries (ZIBs) is a critical step in building large-scale green energy conversion and storage systems in the future. Manganese dioxide is one of the most well-studied cathode materials for zinc-ion batteries due to its wide range of crystal forms, cost-effectiveness, and well-established synthesis processes. This review describes the recent research progress of manganese dioxide-based ZIBs, and the reaction mechanism, electrochemical performance, and challenges of manganese dioxide-based ZIBs materials are systematically introduced. Optimization strategies for high-performance manganese dioxide-based materials for ZIBs with different crystal forms, nanostructures, morphologies, and compositions are discussed. Finally, the current challenges and future research directions of manganese dioxide-based cathodes in ZIBs are envisaged.

5.
Adv Mater ; 36(2): e2305238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37665975

RESUMEN

The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large-area devices. Herein, buried-metal-grid tin-doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140-nm-thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq-1 . The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO-based PSCs, the BMG ITO-based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel-connected large-area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted-structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large-area PSCs.

6.
Nanomaterials (Basel) ; 13(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37836344

RESUMEN

Perovskite nanocrystals (PeNCs) have emerged as a promising class of luminescent materials offering size and composition-tunable luminescence with high efficiency and color purity in the visible range. PeNCs doped with Yb3+ ions, known for their near-infrared (NIR) emission properties, have gained significant attention due to their potential applications. However, these materials still face challenges with weak NIR electroluminescence (EL) emission and low external quantum efficiency (EQE), primarily due to undesired resonance energy transfer (RET) occurring between the host and Yb3+ ions, which adversely affects their emission efficiency and device performance. Herein, we report the synergistic enhancement of NIR emission in a CsPbCl3 host through co-doping with Yb3+/Nd3+ ions for perovskite LEDs (PeLEDs). The co-doping of Yb3+/Nd3+ ions in a CsPbCl3 host resulted in enhanced NIR emission above 1000 nm, which is highly desirable for NIR optoelectronic applications. This cooperative energy transfer between Yb3+ and Nd3+ can enhance the overall efficiency of energy conversion. Furthermore, the PeLEDs incorporating the co-doped CsPbCl3/Yb3+/Nd3+ PeNCs as an emitting layer exhibited significantly enhanced NIR EL compared to the single doped PeLEDs. The optimized co-doped PeLEDs showed improved device performance, including increased EQE of 6.2% at 1035 nm wavelength and low turn-on voltage. Our findings highlight the potential of co-doping with Yb3+ and Nd3+ ions as a strategy for achieving synergistic enhancement of NIR emission in CsPbCl3 perovskite materials, which could pave the way for the development of highly efficient perovskite LEDs for NIR optoelectronic applications.

7.
Light Sci Appl ; 12(1): 177, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37482582

RESUMEN

Blue perovskite light-emitting diodes (PeLEDs) are essential in pixels of perovskite displays, while their progress lags far behind their red and green counterparts. Here, we focus on recent advances of blue PeLEDs and systematically review the noteworthy strategies, which are categorized into compositional engineering, dimensional control, and size confinement, on optimizing microstructures, energy landscapes, and charge behaviors of wide-bandgap perovskite emitters (bandgap >2.5 eV). Moreover, the stability of perovskite blue emitters and related devices is discussed. In the end, we propose a technical roadmap for the fabrication of state-of-the-art blue PeLEDs to chase and achieve comparable performance with the other two primary-color devices.

8.
Nanotechnology ; 34(27)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37011606

RESUMEN

Perovskite nanocrystals (NCs) feature adjustable bandgap, wide absorption range, and great color purity for robust perovskite optoelectronic applications. Nevertheless, the absence of lasting stability under continues energization, is still a major hurdle to the widespread use of NCs in commercial applications. In particular, the reactivity of red-emitting perovskites to environmental surroundings is more sensitive than that of their green counterparts. Here, we present a simple synthesis of ultrathin ZrO2coated, Sr2+doped CsPbBrI2NCs. Introducing divalent Sr2+may significantly eliminate Pb° surface traps, whereas ZrO2encapsulation greatly improves environmental stability. The photoluminescence quantum yield of the Sr2+-doped CsPbBrI2/ZrO2NCs was increased from 50.2% to 87.2% as a direct consequence of the efficient elimination of Pb° surface defects. Moreover, the thickness of the ZrO2thin coating gives remarkable heat resistance and improved water stability. Combining CsPbSr0.3BrI2/ZrO2NCs in a white light emitting diode (LED) with an excellent optical efficiency (100.08 lm W-1), high and a broad gamut 141% (NTSC) standard. This work offers a potential method to suppress Pb° traps by doping with Sr2+and improves the performance of perovskite NCs by ultrathin coating structured ZrO2, consequently enabling their applicability in commercial optical displays.

9.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835371

RESUMEN

The glucose regulated protein (GRP78) is an important chaperone for various environmental and physiological stimulations. Despite the importance of GRP78 in cell survival and tumor progression, the information regarding GRP78 in silkworm Bombyx mori L. is poorly explored. We previously identified that GRP78 expression was significantly upregulated in the silkworm Nd mutation proteome database. Herein, we characterized the GRP78 protein from silkworm B. mori (hereafter, BmGRP78). The identified BmGRP78 protein encoded a 658 amino acid residues protein with a predicted molecular weight of approximately 73 kDa and comprised of two structural domains, a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). BmGRP78 was ubiquitously expressed in all examined tissues and developmental stages by quantitative RT-PCR and Western blotting analysis. The purified recombinant BmGRP78 (rBmGRP78) exhibited ATPase activity and could inhibit the aggregating thermolabile model substrates. Heat-induction or Pb/Hg-exposure strongly stimulated the upregulation expression at the translation levels of BmGRP78 in BmN cells, whereas no significant change resulting from BmNPV infection was found. Additionally, heat, Pb, Hg, and BmNPV exposure resulted in the translocation of BmGRP78 into the nucleus. These results lay a foundation for the future identification of the molecular mechanisms related to GRP78 in silkworms.


Asunto(s)
Bombyx , Chaperón BiP del Retículo Endoplásmico , Proteínas de Insectos , Animales , Bombyx/genética , Bombyx/metabolismo , Bombyx/virología , Chaperón BiP del Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Plomo/toxicidad , Nucleopoliedrovirus/genética
10.
Nanoscale ; 14(44): 16548-16559, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36314647

RESUMEN

The working stability of perovskite light-emitting diodes (LEDs) has become an urgent bottleneck to be solved in the process of commercialization. Although lead halide perovskite CsPbX3 (X = Br, I, Cl) quantum dots (QDs) are considered rising stars in the lighting market owing to their excellent optoelectronic properties, they suffer from fluorescence quenching under thermal conditions. Unfortunately, the surfaces of electronic devices inevitably warm up under long-term energization, which is extremely detrimental to the appropriate functioning of CsPbX3 QDs. Based on the above discussion, the relationship function between the energization time and surface temperature of electronic devices was analyzed, after which a strategy for the preparation of dual-encapsulating perovskites using organic (polystyrene (PS)) and inorganic (ZrO2) materials was proposed, and the change in optical stability before and after encapsulation was investigated. The results show that the thermal stability of CsPbBr3@ZrO2/PS composite films (CFs) after the dual encapsulation was remarkably enhanced, and the assembled white LEDs still retain the initial emission intensity under prolonged high-power operation. In addition, the double encapsulation layer completely suppresses the ion leakage in CsPbBr3 and avoids damage to the ecosystem. It can be seen that this encapsulation strategy was capable of imparting excellent working stability to the perovskite material, which would clear the obstacles to commercial conversion.

11.
Front Aging Neurosci ; 14: 890512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645772

RESUMEN

Depression can be a non-motor symptom, a risk factor, and even a co-morbidity of Parkinson's disease (PD). In either case, depression seriously affects the quality of life of PD patients. Unfortunately, at present, a large number of clinical and basic studies focused on the pathophysiological mechanism of PD and the prevention and treatment of motor symptoms. Although there has been increasing attention to PD-related depression, it is difficult to achieve early detection and early intervention, because the clinical guidelines mostly refer to depression developed after or accompanied by motor impairments. Why is there such a dilemma? This is because there has been no suitable preclinical animal model for studying the relationship between depression and PD, and the assessment of depressive behavior in PD preclinical models is as well a very challenging task since it is not free from the confounding from the motor impairment. As a common method to simulate PD symptoms, neurotoxin-induced PD models have been widely used. Studies have found that neurotoxin-induced PD model animals could exhibit depression-like behaviors, which sometimes manifested earlier than motor impairments. Therefore, there have been attempts to establish the PD-related depression model by neurotoxin induction. However, due to a lack of unified protocol, the reported results were diverse. For the purpose of further promoting the improvement and optimization of the animal models and the study of PD-related depression, we reviewed the establishment and evaluation strategies of the current animal models of PD-related depression based on both the existing literature and our own research experience, and discussed the possible mechanism and interventions, in order to provide a reference for future research in this area.

12.
J Breath Res ; 16(2)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35196265

RESUMEN

A key component of the differential diagnosis of isolated hyperbilirubinemia (HB) is distinguishing between hemolytic and non-hemolytic types. Routine hemolysis screening markers have unsatisfactory sensitivity and specificity. Erythrocyte (RBC) lifespan shortening, the gold standard marker of hemolysis, is seldomly measured due to the cumbersome and protracted nature of standard methods. A new Levitt's CO breath test method may enable simple, rapid RBC lifespan measurement. In this pilot prospective diagnostic study, Levitt's CO breath test was evaluated to discriminate hemolytic from non-hemolytic HB in adults. One hundred and thirty eligible non-smoking adult patients who were aged 18 or older, referred for chronic (>6 months) isolated HB or had a known diagnosis of isolated HB of a rare cause, were recruited, including 77 with non-hemolytic HB and 53 with hemolytic HB. ROC curve analysis was applied to determine the optimal cutoff for discriminating between hemolytic and non-hemolytic HB, and the performance was calculated. Results showed that the mean RBC lifespan in non-hemolytic HB (93 ± 26 d) was reduced (p= 0.001 vs. normal reference value of 126 d), but longer than that in hemolytic HB (36 ± 17 d;p= 0.001). RBC lifespans did not differ significantly between 26 patients with simple hemolytic HB (32 ± 14 d) and 27 patients with a Gilbert syndrome comorbidity (40 ± 18 d). ROC curve analysis revealed an optimal lifespan cutoff for discriminating between hemolytic and non-hemolytic HB of 60 d (AUC = 0.982), with a diagnostic accuracy of 95.4%, 94.3% sensitivity and 96.1% specificity respectively. These results indicate that Levitt's CO breath test seems to be very sensitive and specific for detecting hemolysis in adult patients with chronic isolated HB, and could enable simple, rapid, and reliable differential diagnosis of isolated HB. A large-scale validation study of the method is warranted.


Asunto(s)
Pruebas Respiratorias , Hemólisis , Adulto , Pruebas Respiratorias/métodos , Diagnóstico Diferencial , Humanos , Hiperbilirrubinemia/diagnóstico , Estudios Prospectivos
13.
Nanoscale ; 14(6): 2359-2366, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35088791

RESUMEN

Among the lead halide perovskites, the photoluminescence quantum yields (PLQYs) of perovskite quantum dots (PQDs) in the violet region are the very lowest. This is an obstacle to the optical applications across the entire visible area based on perovskite materials. Herein, we report a novel strontium (Sr)-substitution along with chlorine passivation strategy to enhance the PLQYs of CsPbCl3 PQDs. We surprisingly found that when the molar ratio of Sr2+/Pb2+ = 0.1/0.9, CsSr0.1Pb0.9Cl3 PQDs exhibit strong single-color violet emission, which is attributed to the effective passivation of chlorine defects. We further found spontaneous self-assembly of PQDs into highly emissive PSCs from the precursor in a highly concentrated solution. Moreover, by dilution of these PSCs, a few small PQD aggregates can be regained, which is similar to the PQDs formed at lower concentrations. Benefiting from the superior collective properties of individual PQDs, these highly fluorescent CsSr0.1Pb0.9Cl3 PSCs can maintain good stability even when directly immersed in water or exposed to illumination.

14.
Nanotechnology ; 33(17)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35026753

RESUMEN

In recent years, significant progress has been made in the red and green perovskite quantum dots (PQDs) based light-emitting devices. However, a scarcity of blue-emitting devices that are extremely efficient precludes their research and development for optoelectronic applications. Taking advantage of tunable bandgaps of PQDs over the entire visible spectrum, herein we tune optical properties of CSPbBr3by mixing Nd3+trivalent lanthanide halide cations for blue light-emitting devices. The CsPbBr3PQDs doped with Nd3+trivalent lanthanide halide cations emitted strong photoemission from green into the blue region. By adjusting their doping concentration, a tunable wavelength from (515 nm) to (450 nm) was achieved with FWHM from (37.83 nm) to (16.6 nm). We simultaneously observed PL linewidth broadening thermal quenching of PL and the blue shift of the optical bandgap from temperature-dependent PL studies. The Nd3+cations into CsPbBr3PQDs more efficiently reduced non-radiative recombination. As a result of the efficient removal of defects from PQDs, the photoluminescence quantum yield (PLQY) has been significantly increased to 91% in the blue-emitting region. Significantly, Nd3+PQDs exhibit excellent long-term stability against the external environment, including water, temperature, and ultraviolet light irradiation. Moreover, we successfully transformed Nd3+doped PQDs into highly fluorescent nanocomposites. Incorporating these findings, we fabricate and test a stable blue light-emitting LED with EL emission at (462 nm), (475 nm), and successfully produce white light emission from Nd3+doped nanocomposites with a CIE at (0.32, 0.34), respectively. The findings imply that low-cost Nd3+doped perovskites may be attractive as light converters in LCDs with a broad color gamut.

15.
Am J Hematol ; 96(10): 1232-1240, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265098

RESUMEN

The red blood cell (RBC) lifespan is an important physiological indicator of clear significance in clinical research, used for the differential diagnosis of various diseases such as anemia, compensatory phase hemolysis, and polycythemia. The 15 N-glycine labeling technique is the gold standard method for determining RBC lifespans. However, the usefulness of this technique in clinical settings is seriously hindered by the several weeks required to complete the analyses. Levitt's CO breath test is another reliable technique for determining RBC lifespans, with a simpler protocol giving much faster results, making it more useful in clinical applications. We compared the CO breath test and 15 N-glycine labeling technique for measuring the human RBC lifespan. We investigated human RBC lifespans where each subject undertook both the 15 N-glycine labeling technique and the CO breath test. The correlation between the results from these two methods was analyzed. Eight of the ten subjects successfully completed the study. The RBC lifespan values obtained by Levitt's CO breath test were lower than those obtained by the 15 N-glycine labeling technique. The RBC lifespan values determined from the 15 N-glycine labeling technique and the CO breath test were significantly correlated, with a Pearson correlation coefficient of R = 0.98 (p < 0.05), while the R2 of the linear regression equation was 0.96. The CO breath test exhibits as good performance as the 15 N-glycine labelling technique in distinguishing healthy subjects from subjects with hemolysis. The result suggests that the CO breath test is a reliable method for quickly determining human RBC lifespans in clinical applications.


Asunto(s)
Eritrocitos/citología , Adulto , Pruebas Respiratorias , Monóxido de Carbono/análisis , Supervivencia Celular , Femenino , Glicina/análisis , Hemólisis , Humanos , Masculino , Persona de Mediana Edad , Isótopos de Nitrógeno/análisis
16.
J Phys Chem Lett ; 12(15): 3786-3794, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33847498

RESUMEN

Lead halide perovskite quantum dots (PQDs) are reported as a promising branch of perovskites, which have recently emerged as a field in luminescent materials research. However, before the practical applications of PQDs can be realized, the problem of poor stability has not yet been solved. Herein, we propose a trioctylphosphine (TOP)-assisted pre-protection low-temperature solvothermal synthesis of highly stable CsPbBr3/TiO2 nanocomposites. Due to the protection of branched ligands and the lower temperature of shell formation, these TOP-modified CsPbBr3 PQDs are successfully incorporated into a TiO2 monolith without a loss of fluorescence intensity. Because the excellent nature of both parent materials is preserved in CsPbBr3/TiO2 nanocomposites, it is found that the as-prepared CsPbBr3/TiO2 nanocomposites not only display excellent photocatalytic activity but also yield improved PL stability, enabling us to build highly stable white light-emitting diodes and to photodegrade rhodamine B.

17.
Dalton Trans ; 50(9): 3308-3314, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33594997

RESUMEN

Very recently, ultrathin perovskite nanostructures, with the advantages of perovskite and ultrathin properties, have received an enormous level of interest due to their many fascinating properties, such as a strong quantum confinement effect and a large specific surface area. In spite of this incredible success of perovskite nanocrystals (NCs), the development of perovskite NCs is still in its infancy, and the production of high-quality ultrathin perovskite nanostructures has been a hot topic in the fields of nanoscience and nanotechnology. Herein, we demonstrate that ultrathin CsPbBr3 perovskite nanosheets (NSs) can be obtained by a simple mixing of precursor-ligand complexes under ambient conditions. It was found that the formation of NSs is ascribed to the stepwise self-assembly of the initially formed different types of ultrathin nanostructures. Due to the disappearance of grain boundaries and protection of branched ligands, these NSs exhibit enhanced optical properties compared to other types of samples. This direct synthesis method opens up a promising road for the synthesis of ultrathin NSs and guides the fabrication of other ultrathin nanostructures.

18.
J Phys Chem Lett ; 11(22): 9862-9868, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33170699

RESUMEN

Very recently, two-dimensional (2D) perovskite nanosheets (PNSs), taking the advantages of perovskite as well as the 2D structure properties, have received an enormous level of interest throughout the scientific community. In spite of this incredible success in perovskite nanocrystals (NCs), self-assembly of many nanostructures in metal halide perovskites has not yet been realized, and producing highly efficient red-emitting PNSs remains challenging. In this Letter, we show that by using CsPbBrI2 perovskite nanoparticles (NPs) as a building block, PNSs can emerge spontaneously under high ambient pressure via template-free self-assembly without additional complicated operation. It is found that the formation of PNSs is ascribed to the high pressure that provides the driving force for the alignment of NPs in solution. Because of the disappearance of the grain boundaries between the adjacent NPs and increased crystallinity, these PNSs self-assembled from NPs exhibit enhanced properties compared to the initial NPs, including higher PL intensity and remarkable chemical stability toward light and water.

19.
Nanoscale ; 12(11): 6403-6410, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32141464

RESUMEN

Among the leading energy materials, metal tri-halide perovskite quantum dots (PQDs) with outstanding optoelectronic properties are at the forefront of current research. However, enormous challenges remain to be addressed, including hazardous components and poor stability, before achieving practical applications of PQDs. Although there are diverse methods to improve the stability of PQDs, it is of central importance to avoid damage during operation. Herein, we develop a pre-protected strategy in which the coating combines the advantages of doping with sodium ions to jointly improve stability. Because the stable Na-rich surface acts as a defence, it protects the PQDs from damage during the coating process; therefore, they retain their initial fluorescence. When employing these Na-rich PQDs as core materials of a coating, the highly fluorescent Na: CsPb(Br,I)3@Al2O3 nanocomposites can maintain good stability even when directly immersed in water or exposed to illumination. Clearly, the combination of these features sheds light on the stabilization and applications of PQDs.

20.
Chem Commun (Camb) ; 55(85): 12809-12812, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31595282

RESUMEN

We show that CsPbBr3 nanowires (NWs) are formed by the hierarchical arrangement of individual nanoparticles (NPs), and reversible transformation from NWs to NPs is also achieved by anion exchange.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...