Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(2): 2140-2153, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38178630

RESUMEN

Multivalent ion cross-linking has been used to form hydrogels between sodium alginate (SA) and hyaluronic acid (HA) in previous studies. However, more stable and robust covalent cross-linking is rarely reported. Herein, we present a facile approach to fabricate a SA and HA hydrogel for wound dressings with injectable, good biocompatibility, and high ductility. HA was first reacted with ethylenediamine to graft an amino group. Then, it was cross-linked with oxidized SA with dialdehyde to form hydrogel networks. The dressing can effectively promote cell migration and wound healing. To increase the antibacterial property of the dressing, we successfully loaded tetracycline hydrochloride into the hydrogel as a model drug. The drug can be released slowly in the alkaline environment of chronic wounds, and the hydrogel releases drugs again in the more acidic environment with wound healing, achieving a long-term antibacterial effect. In addition, one-dimensional partial differential equations based on Fickian diffusion with time-varying diffusion coefficients and hydrogel thicknesses were used to model the entire complex drug release process and to predict drug release.


Asunto(s)
Vendajes , Hidrogeles , Hidrogeles/farmacología , Antibacterianos/farmacología , Cicatrización de Heridas , Tetraciclina/farmacología , Ácido Hialurónico/farmacología
2.
ACS Appl Bio Mater ; 7(2): 1169-1178, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38253011

RESUMEN

Manganese dioxide (MnO2) is considered as a promising drug carrier material suitable for the tumor microenvironment while lacking conducive structures for drug loading. Herein, we construct a MnO2 nanoplatform with a hollow rhombic dodecahedral morphology for drug delivery. In this work, we obtained zeolitic imidazolate framework nanoparticles (ZIF-90 NPs) via a coordination reaction. Furthermore, the drug-loading nanoparticles (ZIF-90/DOX NPs) were obtained by Schiff's base reaction and then selected as a sacrificial template to obtain the hollow nanoplatforms (ZIF-90@MnO2 NPs). Moreover, the photothermal effect and multiresponsive drug release behaviors were revealed by loading the photothermal agent IR-820 and the anticancer drug doxorubicin hydrochloride (DOX). Our study demonstrates that the ZIF-90@MnO2 NPs loaded with photosensitizers exhibited excellent photothermal conversion performance. Benefiting from the hollow structure and redox activity, remarkable drug loading and release performances of ZIF-90@MnO2 NPs were achieved. It is shown that ZIF-90@MnO2 NPs achieved a satisfactory drug-loading efficiency (up to ca. 69.7%) for DOX. More promisingly, the ZIF-90@MnO2 NPs exhibited significant glutathione (GSH)/pH-responsive drug release and degradation performances. Overall, this work highlights the potential of controlled drug release of nanocarriers and offers unique insights into the design of nanocarriers with hollow structures.


Asunto(s)
Compuestos de Manganeso , Estructuras Metalorgánicas , Nanopartículas , Óxidos , Sistemas de Liberación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA