Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 79(5): 1172-1184, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37473847

RESUMEN

BACKGROUND & AIMS: Tumor-associated macrophages (TAMs) are indispensable in the hepatocellular carcinoma (HCC) tumor microenvironment. Xanthine oxidoreductase (XOR), also known as xanthine dehydrogenase (XDH), participates in purine metabolism, uric acid production, and macrophage polarization to a pro-inflammatory phenotype. However, the role of XOR in HCC-associated TAMs is unclear. METHODS: We evaluated the XOR level in macrophages isolated from HCC tissues and paired adjacent tissues. We established diethylnitrosamine/carbon tetrachloride (CCl4)-induced and orthotopically implanted HCC mouse models using mice with Xdh-specific depletion in the myeloid cell lineage (Xdhf/fLyz2cre) or Kupffer cells (Xdhf/fClec4fcre). We determined metabolic differences using specific methodologies, including metabolomics and metabolic flux. RESULTS: We found that XOR expression was downregulated in HCC TAMs and positively correlated with patient survival, which was strongly related to the characteristics of the tumor microenvironment, especially hypoxia. Using HCC-inflicted mice (Xdhf/fLyz2cre and Xdhf/fClec4fcre), we revealed that XOR loss in monocyte-derived TAMs rather than Kupffer cells promoted their M2 polarization and CD8+ T-cell exhaustion, which exacerbated HCC progression. In addition, the tricarboxylic acid cycle was disturbed, and the generation of α-ketoglutarate was enhanced within XOR-depleted macrophages. XOR inhibited α-ketoglutarate production by interacting with IDH3α catalytic sites (K142 and Q139). The increased IDH3α activity caused increased adenosine and kynurenic acid production in TAMs, which enhanced the immunosuppressive effects of TAMs and CD8+ T cells. CONCLUSIONS: The XOR-IDH3α axis mediates TAM polarization and HCC progression and may be a small-molecule therapeutic or immunotherapeutic target against suppressive HCC TAMs. IMPACT AND IMPLICATIONS: Immunotherapies have been widely applied to the treatment of hepatocellular carcinoma (HCC), but to date they have been associated with unsatisfactory efficacy. The tumor microenvironment of HCC is full of different infiltrating immune cells. Tumor-associated macrophages (TAMs) are vital components in the tumor microenvironment and are involved in HCC progression. Herein, we confirm the downregulation of XOR expression in TAMs isolated from human HCC. The loss of XOR in monocyte-derived macrophages increases IDH3 activity and results in an increase in α-ketoglutarate production, which can promote M2-like polarization. Additionally, XOR-null TAMs derived from monocytes promote CD8+ T-cell exhaustion via the upregulation of immunosuppressive metabolites, including adenosine and kynurenic acid. Given the prevalence and high rate of incidence of HCC and the need for improved therapeutic options for patients, our findings identify potential therapeutic targets that may be further studied to develop improved therapies.

2.
Hepatology ; 74(6): 3110-3126, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34322898

RESUMEN

BACKGROUND AND AIMS: NASH is an advanced stage of liver disease accompanied by lipid accumulation, inflammation, and liver fibrosis. Guanine nucleotide-binding protein G(i) subunit alpha-2 (GNAI2) is a member of the "inhibitory" class of α-subunits, and recent studies showed that Gnai2 deficiency is known to cause reduced weight in mice. However, the role of GNAI2 in hepatocytes, particularly in the context of liver inflammation and lipid metabolism, remains to be elucidated. Herein, we aim to ascertain the function of GNAI2 in hepatocytes and its impact on the development of NASH. APPROACH AND RESULTS: Human liver tissues were obtained from NASH patients and healthy persons to evaluate the expression and clinical relevance of GNAI2. In addition, hepatocyte-specific Gnai2-deficient mice (Gnai2hep-/- ) were fed either a Western diet supplemented with fructose in drinking water (WDF) for 16 weeks or a methionine/choline-deficient diet (MCD) for 6 weeks to investigate the regulatory role and underlying mechanism of Gnai2 in NASH. GNAI2 was significantly up-regulated in liver tissues of patients with NASH. Following feeding with WDF or MCD diets, livers from Gnai2hep-/- mice had reduced steatohepatitis with suppression of markers of inflammation and an increase in lipophagy compared to Gnai2flox/flox mice. Toll-like receptor 4 signals through nuclear factor kappa B to trigger p65-dependent transcription of Gnai2. Intriguingly, immunoprecipitation, immunofluorescence, and mass spectrometry identified peroxiredoxin 1 (PRDX1) as a binding partner of GNAI2. Moreover, the function of PRDX1 in the suppression of TNF receptor-associated factor 6 ubiquitin-ligase activity and glycerophosphodiester phosphodiesterase domain-containing 5-related phosphatidylcholine metabolism was inhibited by GNAI2. Suppression of GNAI2 combined with overexpression of PRDX1 reversed the development of steatosis and fibrosis in vivo. CONCLUSIONS: GNAI2 is a major regulator that leads to the development of NASH. Thus, inhibition of GNAI2 could be an effective therapeutic target for the treatment of NASH.


Asunto(s)
Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Peroxirredoxinas/metabolismo , Adulto , Animales , Autofagia/inmunología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Hepatocitos , Humanos , Hígado/inmunología , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Unión Proteica/inmunología , Transducción de Señal/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...