Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(17): 7279-7290, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629869

RESUMEN

Exposure to hexavalent chromium damages genetic materials like DNA and chromosomes, further elevating cancer risk, yet research rarely focuses on related immunological mechanisms, which play an important role in the occurrence and development of cancer. We investigated the association between blood chromium (Cr) levels and genetic damage biomarkers as well as the immune regulatory mechanism involved, such as costimulatory molecules, in 120 workers exposed to chromates. Higher blood Cr levels were linearly correlated with higher genetic damage, reflected by urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and blood micronucleus frequency (MNF). Exploratory factor analysis revealed that both positive and negative immune regulation patterns were positively associated with blood Cr. Specifically, higher levels of programmed cell death protein 1 (PD-1; mediated proportion: 4.12%), programmed cell death ligand 1 (PD-L1; 5.22%), lymphocyte activation gene 3 (LAG-3; 2.11%), and their constitutive positive immune regulation pattern (5.86%) indirectly positively influenced the relationship between blood Cr and urinary 8-OHdG. NOD-like receptor family pyrin domain containing 3 (NLRP3) positively affected the association between blood Cr levels and inflammatory immunity. This study, using machine learning, investigated immune regulation and its potential role in chromate-induced genetic damage, providing insights into complex relationships and emphasizing the need for further research.


Asunto(s)
Cromatos , Aprendizaje Automático , Humanos , Estudios Transversales , Contaminantes Ambientales , Masculino , Daño del ADN , Adulto , Femenino , Persona de Mediana Edad , Biomarcadores
2.
ACS Appl Mater Interfaces ; 16(11): 13525-13533, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38467516

RESUMEN

Flexible electronics have been of great interest in the past few decades for their wide-ranging applications in health monitoring, human-machine interaction, artificial intelligence, and biomedical engineering. Currently, transfer printing is a popular technology for flexible electronics manufacturing. However, typical sacrificial intermediate layer-based transfer printing through chemical reactions results in a series of challenges, such as time consumption and interface incompatibility. In this paper, we have developed a time-saving, wafer-recyclable, eco-friendly, and multiscale transfer printing method by using a stable transferable photoresist. Demonstration of photoresist with various, high-resolution, and multiscale patterns from the donor substrate of silicon wafer to different flexible polymer substrates without any damage is conducted using the as-developed dry transfer printing process. Notably, by utilizing the photoresist patterns as conformal masks and combining them with physical vapor deposition and dry lift-off processes, we have achieved in situ fabrication of metal patterns on flexible substrates. Furthermore, a mechanical experiment has been conducted to demonstrate the mechanism of photoresist transfer printing and dry lift-off processes. Finally, we demonstrated the application of in situ fabricated electrode devices for collecting electromyography and electrocardiogram signals. Compared to commercially available hydrogel electrodes, our electrodes exhibited higher sensitivity, greater stability, and the ability to achieve long-term health monitoring.

3.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338452

RESUMEN

The efficient synthesis of nanosheets containing two metal ions is currently a formidable challenge. Here, we attempted to dope lanthanide-based bimetals into porphyrin-based metal-organic skeleton materials (MOFs) by microwave-assisted heating. The results of the EDX, ICP, and XPS tests show that we have successfully synthesized porphyrin-based lanthanide bimetallic nanosheets (Tb-Eu-TCPP) using a household microwave oven. In addition, it is tested and experimentally evident that these nanosheets have a thinner thickness, a larger BET surface area, and higher photogenerated carrier separation efficiency than bulk porphyrin-based bimetallic materials, thus exhibiting enhanced photocatalytic activity and n-type semiconductor properties. Furthermore, the prepared Tb-Eu-TCPP nanomaterials are more efficient in generating single-linear state oxygen under visible light irradiation compared to pristine monometallic nanosheets due to the generation of bimetallic nodes. The significant increase in catalytic activity is attributed to the improved separation and transfer efficiency of photogenerated carriers. This study not only deepens our understanding of lanthanide bimetallic nanosheet materials but also introduces an innovative approach to improve the photocatalytic performance of MOFs.

4.
Front Immunol ; 13: 934494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911707

RESUMEN

This study aims to investigate the immune and epigenetic mutational landscape of necroptosis in lung adenocarcinoma (LUAD), identify novel molecular phenotypes, and develop a prognostic scoring system based on necroptosis regulatory molecules for a better understanding of the tumor immune microenvironment (TIME) in LUAD. Based on the Cancer Genome Atlas and Gene Expression Omnibus database, a total of 29 overlapped necroptosis-related genes were enrolled to classify patients into different necroptosis phenotypes using unsupervised consensus clustering. We systematically correlated the phenotypes with clinical features, immunocyte infiltrating levels, and epigenetic mutation characteristics. A novel scoring system was then constructed, termed NecroScore, to quantify necroptosis of LUAD by principal component analysis. Three distinct necroptosis phenotypes were confirmed. Two clusters with high expression of necroptosis-related regulators were "hot tumors", while another phenotype with low expression was a "cold tumor". Molecular characteristics, including mutational frequency and types, copy number variation, and regulon activity differed significantly among the subtypes. The NecroScore, as an independent prognostic factor (HR=1.086, 95%CI=1.040-1.133, p<0.001), was able to predict the survival outcomes and show that patients with higher scores experienced a poorer prognosis. It could also evaluate the responses to immunotherapy and chemotherapeutic efficiency. In conclusion, necroptosis-related molecules are correlated with genome diversity in pan-cancer, playing a significant role in forming the TIME of LUAD. Necroptosis phenotypes can distinguish different TIME and molecular features, and the NecroScore is a promising biomarker for predicting prognosis, as well as immuno- and chemotherapeutic benefits in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Variaciones en el Número de Copia de ADN , Humanos , Neoplasias Pulmonares/patología , Necroptosis/genética , Fenotipo , Microambiente Tumoral/genética
5.
Oxid Med Cell Longev ; 2022: 8297011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35313641

RESUMEN

Purpose: This study is aimed at systematically analyzing the expression, function, and prognostic value of six transmembrane epithelial antigen of the prostate 1 (STEAP1) in various cancers. Methods: The expressions of STEAP1 between normal and tumor tissues were analyzed using TCGA and GTEx. Clinicopathologic data was collected from GEPIA and TCGA. Prognostic analysis was conducted by Cox proportional hazard regression and Kaplan-Meier survival. DNA methylation, mutation features, and molecular subtypes of cancers were also investigated. The top-100 coexpressed genes with STEAP1 were involved in functional enrichment analysis. ESTIMATE algorithm was used to analyze the correlation between STEAP1 and immunity value. The relationships of STEAP1 and biomarkers including tumor mutational burden (TMB), microsatellite instability (MSI), and stemness score as well as chemosensitivity were also illustrated. Results: Among 33 cancers, STEAP1 was overexpressed in 19 cancers such as cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma, and lymphoid neoplasm diffuse large B cell lymphoma while was downregulated in 5 cancers such as adrenocortical carcinoma, breast invasive carcinoma (BRCA), and kidney chromophobe renal cell carcinoma. STEAP1 has significant prognostic relationships in multiple cancers. 15 cancers exhibited differences of DNA methylation including bladder urothelial carcinoma, BRCA, and CESC. STEAP1 expression was positively correlated to immune molecules especially in thyroid carcinoma and negatively especially in uveal melanoma. STEAP1 was associated with TMB and MSI in certain cancers. In addition, STEAP1 was connected with increased chemosensitivity of drugs such as trametinib and pimasertib. Conclusions: STEAP1 was an underlying target for prognostic prediction in different cancer types and a potential biomarker of TMB, MSI, tumor microenvironment, and chemosensitivity.


Asunto(s)
Antígenos de Neoplasias , Carcinoma de Células Transicionales , Oxidorreductasas , Neoplasias de la Vejiga Urinaria , Antígenos de Neoplasias/metabolismo , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Humanos , Oxidorreductasas/metabolismo , Pronóstico , Microambiente Tumoral/genética , Neoplasias de la Vejiga Urinaria/patología
6.
Nanoscale ; 11(35): 16571-16581, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31460557

RESUMEN

Graphene quantum dots (GQDs) have attracted significant interest as synthetically tunable optoelectronic and photonic materials that can also serve as model systems for understanding size-dependent behaviors of related graphene structures such as nanoribbons. We present a Raman spectroscopy study of bottom-up synthesized GQDs with lateral dimensions between 0.97 to 1.62 nm, well-defined (armchair) edge type, and fully benzenoid structures. For a better understanding of observed size-dependent trends, the study is extended to larger graphene structures including nano-graphene platelets (>25 nm) and large-area graphene. Raman spectra of GQDs reveal the presence of D and G bands, as well as higher order modes (2D, D + G, and 2G). The D and G band frequencies and intensity were found to increase as GQD size increases, while higher order modes (2D, D + G, and 2G) also increased in intensity and became more well-defined. The integrated intensity ratios of D and G bands (ID/IG) increase as the size of the GQDs approaches 2 nm and rapidly decrease for larger graphene structures. We present a quantitative comparison of ID/IG ratios for the GQDs and for defects introduced into large area graphenes through ion bombardment, for which inter-defect distances are comparable to the sizes of GQDs studied here. Close agreement suggests the ID/IG ratio as a size diagnostic for other nanographenes. Finally, we show that Raman spectroscopy is also a good diagnostic tool for monitoring the formation of bottom-up synthesized GQDs.

7.
J Phys Chem Lett ; 10(5): 953-959, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30764609

RESUMEN

The electronic structure of a series of bottom-up synthesized graphene quantum dots (GQDs) smaller than 2 nm was investigated by spectroelectrochemistry, yielding insights not previously available from ensemble-level studies. The results show that for the strongly confined GQDs the dependence of the band gap on the GQD size deviates from the prediction of the standard Dirac Fermion model but agrees well with the models explicitly accounting for the electron-electron and electron-hole interactions. The HOMO/LUMO energy levels are found to be distributed nearly symmetrically around the 0 V value versus normal hydrogen electrode (NHE), becoming more positive/negative, respectively, with increasing GQD size. The exciton binding energies are found to follow power dependence on the number of carbon atoms per GQD, with the experimental values falling within the range of ∼0.1 to ∼0.6 eV. Given the broad accessibility of the described experimental tools and methods, our work opens a path to a more systematic examination of quantum confinement effects in GQDs.

8.
ACS Nano ; 9(4): 4043-9, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25768313

RESUMEN

Polyclic aromatic hydrocarbons also called Graphene Molecules (GMs), with chemical composition C132H36(COOH)2 were synthesized in situ on the surface of transparent nanocrystalline indium tin oxide (nc-ITO) electrodes and their electronic structure was studied electrochemically and spectro-electrochemically. Variations in the potential applied onto the nc-ITO/GM electrodes induce only small changes in the observed current, but they produce dramatic changes in the absorption of the GMs, which are associated with their oxidation and reduction. Analysis of the absorption changes using a modified Nernst equation is used to determine standard potentials associated with the individual charge transfer processes. For the GMs prepared here, these were found to be E1,ox(0) = 0.77 ± 0.01 V and E2,ox(0) = 1.24 ± 0.02 V vs NHE for the first and second oxidation and E1,red(0) = -1.50 ± 0.04 V for the first reduction. The charge transfer processes are found to be nonideal. The nonideality factors associated with the oxidation and reduction processes are attributed to strong interactions between the GM redox centers. Under the conditions of potential cycling, GMs show rapid (seconds) color change with high contrast and stability. An electrochromic application is demonstrated wherein the GMs are used as the optically active component.

9.
ACS Appl Mater Interfaces ; 6(22): 20473-8, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25322280

RESUMEN

We present a method for preparation of graphene molecules (GMs), whereby a polyphenylene precursor functionalized with surface anchoring groups, preadsorbed on surface of TiO2, is oxidatively dehydrogenated in situ via a Scholl reaction. The reaction, performed at ambient conditions, yields surface adsorbed GMs structurally and electronically equivalent to those synthesized in solution. The new synthetic approach reduces the challenges associated with the tendency of GMs to aggregate and provides a convenient path for integration of GMs into optoelectronic applications. The surface synthesized GMs can be effectively reduced or oxidized via an interfacial charge transfer and can also function as sensitizers for metal oxides in light harvesting applications. Sensitized solar cells (SSCs) prepared from mesoscopic TiO2/GM films and an iodide-based liquid electrolyte show photocurrents of ∼2.5 mA/cm2, an open circuit voltage of ∼0.55 V and fill factor of ∼0.65 under AM 1.5 illumination. The observed power conversion efficiency of η=0.87% is the highest reported efficiency for the GM sensitized solar cell. The performance of the devices was reproducible and stable for a period of at least 3 weeks. We also report first external and internal quantum efficiency measurements for GM SSCs, which point to possible paths for further performance improvements.

10.
ACS Appl Mater Interfaces ; 5(17): 8641-8, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23927567

RESUMEN

We report the synthesis, photophysical, and electrochemical studies of a series of cyclometalated ruthenium sensitizers carrying triphenylamino linkers for p-type NiO dye-sensitized solar cells (DSSCs). The general structure of these ruthenium sensitizers is Ru[N∧N]2[N∧C], where [N∧N] is a diimine ligand and [N∧C] is a cyclometalated ligand. The triphenylamino group is attached to the -para position of the ruthenium-carbon bond of the [N∧)] ligand as a linker to bridge the ruthenium chromophore and the NiO surface and to enhance the electronic coupling for hole injection. As a result, cells made with these sensitizers generate higher short-circuit currents (Jsc) than cells sensitized with our prior sensitizers with phenylene linkers. Morever the N∧N ligands are systematically tuned from 2,2'-bipyridine (O3), to 1,10-phenanthroline (O13), and to bathophenanthroline (O17). Following the series, the conjugation of the N∧N ligand is increased, which results in the enhancement of extinction coefficient and the red shift of light absorption. However the solar cell sensitized with O3 still gives the largest Jsc of 3.04 mA/cm2. The large Jsc highlights the promising potential of using these cyclometalated ruthenium sensitizers for NiO DSSCs. In addition, the carrier dynamics of these solar cells has been systematically studied by intensity-modulated photovoltage spectroscopy (IMVS) and intensity-modulated photocurrent spectroscopy (IMPS). The results suggest that the O3 solar cell giving the largest Jsc is likely caused by the slow geminate charge recombination and efficient dye regeneration.


Asunto(s)
Colorantes/química , Complejos de Coordinación/química , Níquel/química , Rutenio/química , Energía Solar , 2,2'-Dipiridil/química , Fenantrolinas/química
11.
J Am Chem Soc ; 135(32): 11696-9, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23895560

RESUMEN

A photostable p-type NiO photocathode based on a bifunctional cyclometalated ruthenium sensitizer and a cobaloxime catalyst has been created for visible-light-driven water reduction to produce H2. The sensitizer is anchored firmly on the surface of NiO, and the binding is resistant to the hydrolytic cleavage. The bifunctional sensitizer can also immobilize the water reduction catalyst. The resultant photoelectrode exhibits superior stability in aqueous solutions. Stable photocurrents have been observed over a period of hours. This finding is useful for addressing the degradation issue in dye-sensitized photoelectrochemical cells caused by desorption of dyes and catalysts. The high stability of our photocathodes should be important for the practical application of these devices for solar fuel production.

12.
ACS Appl Mater Interfaces ; 4(11): 5922-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23054373

RESUMEN

We have systematically studied the effects of substitutional doping of p-type nanoparticulate NiO with cobalt ions. Thin films of pure and Co-doped NiO nanoparticles with nominal compositions Co(x)Ni(1-x)O(y) (0 ≤ x ≤ 0.1) were fabricated using sol-gel method. X-ray photoelectron spectroscopy revealed a surface enrichment of divalent cobalt ions in the Co(x)Ni(1-x)O(y) nanoparticles. Mott-Schottky analysis in aqueous solutions was used to determine the space charge capacitance values of the films against aqueous electrolytes, which yielded acceptor state densities (N(A)) and apparent flat-band potentials (E(fb)). Both N(A) and E(fb) values of the doped NiO were found to gradually increase with increasing amount of doping; thus the Fermi energy level of the charge carriers decreased with Co-doping. The photovoltage of p-DSCs constructed using the Co(x)Ni(1-x)O(y) films increased with increasing amount of cobalt, as expected from the trend in the E(fb). Co-doping increased both carrier lifetimes within the p-DSCs and the carrier transport times within the nanoparticulate semiconductor network. The nominal composition of Co0.06Ni0.94O(y) was found to be optimal for use in p-DSCs.


Asunto(s)
Cobalto/química , Cristalización/métodos , Suministros de Energía Eléctrica , Nanopartículas del Metal/química , Nanotecnología/métodos , Níquel/química , Energía Solar , Electrodos , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Nanopartículas del Metal/ultraestructura , Conformación Molecular , Nanotecnología/instrumentación , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
13.
Langmuir ; 28(1): 950-6, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22085223

RESUMEN

We present a systematic investigation of the fundamental effects of an atomically deposited alumina (AlO(x)H(y)) onto the NiO films in p-type dye-sensitized solar cells (p-DSCs). With P1 as the sensitizing dye and 0.1 M I(2) and 1.0 M LiI in 3-methoxypropionitrile as the electrolyte, one atomic layer deposition (ALD) cycle of alumina was used to achieve a 74% increase in the overall conversion efficiency of a NiO-based DSC. The open circuit voltage of the cells increased from 0.11 to 0.15 V, and the short circuit current density increased from 0.83 to 0.95 mA/cm(2). Adsorption isotherm studies were performed to show that the amount of dye adsorbed on the NiO-alumina film is slightly lower than the amount adsorbed on the nontreated NiO film. The increased J(sc) was therefore assigned to the increased efficiency of carrier collection at the semiconductor-FTO interface. Our study of the photocurrent onset potentials of NiO and NiO-alumina films with the chopped light measurement technique showed no definitive difference in the onset potential values. However, the DSCs based on NiO-alumina showed a higher recombination resistance value from the electrochemical impedance studies and a higher diode ideality factor from the V(oc) versus ln(light intensity) plots as compared to the DSCs based on untreated NiO. It has thus been established that the increase in V(oc) upon alumina treatment arises due to a higher resistance for electron-hole recombination across NiO surface locally.

14.
J Phys Chem Lett ; 3(9): 1074-8, 2012 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-26288038

RESUMEN

Exploring new p-type semiconductor nanoparticles alternative to the commonly used NiO is crucial for p-type dye-sensitized solar cells (p-DSSCs) to achieve higher open-circuit voltages (Voc). Here we report the first application of delafossite CuGaO2 nanoplates for p-DSSCs with high photovoltages. In contrast to the dark color of NiO, our CuGaO2 nanoplates are white. Therefore, the porous films made of these nanoplates barely compete with the dye sensitizers for visible light absorption. This presents an attractive advantage over the NiO films commonly used in p-DSSCs. We have measured the dependence of Voc on the illumination intensity to estimate the maximum obtainable Voc from the CuGaO2-based p-DSSCs. Excitingly, a saturation photovoltage of 464 mV has been observed when a polypyridyl Co(3+/2+)(dtb-bpy) electrolyte was used. Under 1 Sun AM 1.5 illumination, a Voc of 357 mV has been achieved. These are among the highest values that have been reported for p-DSSCs.

15.
Zhong Yao Cai ; 35(8): 1326-30, 2012 Aug.
Artículo en Chino | MEDLINE | ID: mdl-23320368

RESUMEN

OBJECTIVE: To optimize the extraction process for Qingrejiedu oral liquid with synthesizing multiple guidelines grading method. METHODS: Used the extraction rate of baicalin and geniposide comprehensive contribution rate variance as index, extraction time and added water were as factors, central composite design was used for optimization of extraction process, and forecasting analysis parameters. RESULTS: The optimal extraction process was as follows: extraction time 139 min, added water 13 times, grading index was 0.768. CONCLUSION: Synthesizing multiple guidelines grading method is ideal for multi-component extraction experiment design, its easy application, the forecast is good and so on.


Asunto(s)
Medicamentos Herbarios Chinos/aislamiento & purificación , Flavonoides/aislamiento & purificación , Iridoides/aislamiento & purificación , Plantas Medicinales/química , Tecnología Farmacéutica/métodos , Administración Oral , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Flavonoides/análisis , Gardenia/química , Iridoides/análisis , Control de Calidad , Reproducibilidad de los Resultados , Scutellaria baicalensis/química , Tecnología Farmacéutica/normas
16.
Chemistry ; 17(8): 2479-91, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21264958

RESUMEN

The synthesis, one-photon photophysics and two-photon absorption (2PA) of three dipolar D-π-A 4-[9,9-di(2-ethylhexyl)-7-diphenylaminofluoren-2-yl]-2,2':6',2''-terpyridine and their platinum chloride complexes with different linkers between the donor and acceptor are reported. All ligands exhibit (1)π,π* transition in the UV and (1)π,π*/(1)ICT (intramolecular charge transfer) transition in the visible regions, while the complexes display a lower-energy (1)π,π*/(1)CT (charge transfer) transition in the visible region in addition to the high-energy (1)π,π* transitions. All ligands and the complexes are emissive at room temperature and 77 K, with the emitting excited state assigned as the mixed (1)π,π* and (1)CT states at RT. Transient absorption from the ligands and the complexes were observed. 2PA was investigated for all ligands and complexes. The two-photon absorption cross-sections (σ(2)) of the complexes (600-2000 GM) measured by Z-scan experiment are much larger than those of their corresponding ligands measured by the two-photon induced fluorescence method. The ligand and the complex with the ethynylene linker show much stronger 2PA than those with the vinylene linker.


Asunto(s)
Fluorenos/química , Modelos Moleculares , Compuestos Organoplatinos/síntesis química , Fotones , Compuestos de Platino/química , Piridinas/química , Fluorenos/síntesis química , Luminiscencia , Estructura Molecular , Compuestos Organoplatinos/química , Procesos Fotoquímicos , Piridinas/síntesis química
17.
Inorg Chem ; 50(3): 705-7, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21204549

RESUMEN

Three platinum(II) terpyridylacetylide charge-transfer complexes possessing a lone ancillary ligand systematically varied in phenylacetylide π-conjugation length, [Pt((t)Bu(3)tpy)([C≡CC(6)H(4)](n)H)]ClO(4) (n = 1-3), are evaluated as photosensitizers (PSs) for visible-light-driven (λ > 420 nm) hydrogen production in the presence of a cobaloxime catalyst and the sacrificial electron donor triethanolamine (TEOA). Excited-state reductive quenching of the PS by TEOA produces PS(-) (k(q) scales with the driving force as 1 > 2 > 3), enabling thermal electron transfer to the cobalt catalyst. The initial H(2) evolution is directly proportional to the incident photon flux and visible-light harvesting capacity of the sensitizer, 3 > 2 > 1. The combined data suggest that PSs exhibiting attenuated bimolecular reductive quenching constants with respect to the diffusion limit can overcome this deficiency through improved light absorption in homogeneous H(2)-evolving compositions.

18.
J Phys Chem B ; 114(45): 14440-9, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-20469901

RESUMEN

The synthesis, photophysics, and excited state absorption properties of three platinum(II) terpyridyl acetylide charge transfer (CT) complexes possessing a lone ancillary ligand systematically varied in phenylacetylide (PA) π-conjugation length, [Pt((t)Bu(3)tpy)([C≡C-C(6)H(4)](n)-H)]ClO(4) (n = 1, 2, 3), are described. Density functional theory (DFT) calculations performed on the ground states of complexes 1, 2, and 3 reveal that their HOMOs reside mainly on the ancillary π-conjugated PA moiety, ranging from 86 to 97%, with LUMOs predominantly centered on the terpyridyl acceptor ligand (91-92%). This electronic structure leads to the production of a triplet ligand-to-ligand CT ((3)LLCT) excited state upon visible light excitation with minor contributions from the corresponding triplet metal-to-ligand CT ((3)MLCT) excited state. Unusually strong red-to-near-IR transient absorptions are produced in the excited states of these molecules following selective long wavelength visible excitation of the low energy CT bands that do not emanate from the terpyridyl radical anion produced in the CT excited state or from an arylacetylide-based triplet intraligand ((3)IL) excited state. The extinction coefficients of these low energy absorption transients were determined using the energy transfer method with anthracene serving as the triplet acceptor. A detailed theoretical investigation using DFT and TDDFT methods reveals that these intense near-IR transient absorptions involve transitions resulting from transient oxidation of the PA subunit. In essence, the production of the (3)LLCT excited state transiently oxidizes the PA moiety by one electron, producing the corresponding highly absorbing radical cation-like species, analogous to that experienced in related intramolecular photoinduced electron transfer reactions. The computational work successfully predicts the oscillator strength and peak wavelength of the measured excited state absorption transients across this series of molecules. In the present effort, there is a convergence of theory and experiment given that the excited state absorption properties of these Pt(II) chromophores are determined by localized transitions that resemble open shell radical cation species.

19.
Inorg Chem ; 49(4): 1337-46, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20092284

RESUMEN

Two back-to-back terpyridine ligands using fluorenyl as bridging group (1-L and 2-L) and their corresponding dinuclear platinum(II) complexes (1 and 2) were synthesized and characterized. Their electronic absorption, photoluminescence, and the triplet transient difference absorption were systematically investigated. Both ligands possess intense (1)pi,pi* absorption in the UV region, and they exhibit structured (1)pi,pi* fluorescence around 400 nm. With addition of p-toluenesulfonic acid to the ligands, both the absorption band and the emission band are red-shifted because of the increased electron-withdrawing ability of the protonated terpyridines and possible mixture of some intraligand charge transfer (ILCT) character. For complexes 1 and 2, they both exhibit broad and strong absorption between 400 and 500 nm, which is assigned as the (1)pi,pi*/(1)ILCT/(1)MLCT (metal-to-ligand charge transfer) transition. The involvement of (1)ILCT in the lowest excited state is evident by the acid titration experiment of the ligands. At room temperature, the complexes exhibit dual emission that admixes fluorescence and phosphorescence from the (1,3)pi,pi*/(1,3)ILCT/(1,3)MLCT states. The assignment of the emitting states is based on the distinct emission lifetimes, different sensitivity to oxygen quenching, and different temperature dependency. Both complexes exhibit emission at 77 K, which is assigned as the mixture of (3)pi,pi*/(3)MLCT. 1 and 2 also exhibit two triplet excited-state absorption bands in the visible to the NIR region, which are tentatively attributed to the (3)pi,pi* and (3)MLCT/(3)ILCT state. In addition, the connection pattern between the fluorenyl component and the terpyridyl components influences the excited-state characteristics of both the ligands and the complexes. Ligand 1-L and its corresponding platinum complex 1 that have the triplet bond connection between the fluorenyl and terpyridyl components exhibit a red-shifted low-energy absorption band, an emission band, and a transient absorption band compared to ligand 2-L and complex 2 that have the fluorenyl directly attached to terpyridyl components. These differences could be rationalized by the enhanced conjugation between the fluorenyl and terpyridyl components in 1-L and 1 because of the better coplanarity induced by the triple bond.


Asunto(s)
Electrones , Metales/química , Fotoquímica/métodos , Platino (Metal)/química , Bencenosulfonatos/química , Cristalización , Electroquímica/métodos , Ligandos , Luminiscencia , Modelos Químicos , Estructura Molecular , Relación Estructura-Actividad , Temperatura
20.
Dalton Trans ; (37): 7725-33, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19759946

RESUMEN

Platinum terpyridyl (tpy) phenylacetylide complexes with -Cl, -CN, and -NMe(2) substituents on the 4'-position of the tpy ligand were synthesized and characterized. Their photophysical properties were systematically investigated. In addition, theoretical electronic structure calculations using density functional theory (DFT) and time-dependent (TD-DFT) approaches were carried out for complexes and ; the results of these calculations provided additional information on the nature of the electronic structures of the low-lying electronic states of these complexes, including the electron density distribution and the composition of the frontier molecular orbitals. Complexes exhibit moderately intense charge-transfer bands in the visible region, which are assigned to the (1)MLCT/(1)LLCT transitions. In comparison to their corresponding chloride complexes , these charge-transfer bands become broadened and red-shifted. Complexes emit at room temperature in CH(3)CN and CH(2)Cl(2) solutions and at 77 K in butyronitrile glassy solutions. At room temperature, the emission is tentatively attributed to (3)MLCT for and , and to a mixture of (3)MLCT/(3)ILCT/(3)pi,pi* for . Due to the admixture of (3)ILCT/(3)pi,pi* characters in its emitting state, displays a much higher emission quantum yield and longer emission lifetime compared to and . Replacing the chloride co-ligand in by phenylacetylide co-ligand clearly enhances the emission and prolongs the lifetime. exhibit a broad and moderately intense triplet excited-state absorption in the visible to the NIR region, with large excited-state absorption coefficients and moderately high triplet excited state quantum yields. Therefore, complexes , especially , have potential applications in organic light emitting devices (OLED) and as reverse saturable absorbing materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...