Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.257
Filtrar
1.
Biomed Environ Sci ; 37(6): 607-616, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38988111

RESUMEN

Objective: Recent studies have indicated potential anti-inflammatory effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on asthma, which is often comorbid with type 2 diabetes mellitus (T2DM) and obesity. Therefore, we conducted a meta-analysis to assess the association between the administration of glucagon-like peptide-1 (GLP-1) receptor-based agonists and the incidence of asthma in patients with T2DM and/or obesity. Methods: PubMed, Web of Science, Embase, the Cochrane Central Register of Controlled Trials, and Clinicaltrial.gov were systematically searched from inception to July 2023. Randomized controlled trials (RCTs) of GLP-1 receptor-based agonists (GLP-1RA, GLP-1 based dual and triple receptor agonist) with reports of asthma events were included. Outcomes were computed as risk ratios ( RR) using a fixed-effects model. Results: Overall, 39 RCTs with a total of 85,755 participants were included. Compared to non-GLP-1 receptor-based agonist users, a trend of reduced risk of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments, although the difference was not statistically significant [ RR = 0.91, 95% confidence interval ( CI): 0.68 to 1.24]. Further Subgroup analyses indicated that the use of light-molecular-weight GLP-1RAs might be associated with a reduced the risk of asthma when compared with non-users ( RR = 0.65, 95% CI: 0.43 to 0.99, P = 0.043). We also performed sensitivity analyses for participant characteristics, study design, drug structure, duration of action, and drug subtypes. However, no significant associations were observed. Conclusion: Compared with non-users, a modest reduction in the incidence of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments. Further investigations are warranted to assess the association between GLP-1 receptor-based agonists and the risk of asthma.


Asunto(s)
Asma , Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Obesidad , Humanos , Asma/epidemiología , Asma/prevención & control , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Incidencia , Obesidad/complicaciones
2.
ACS Nano ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996344

RESUMEN

Simultaneous detection and structural characterization of protein variants on a single platform are highly desirable but technically challenging. Herein, we present a single-molecule spectral system based on a gold plasmonic nanopore for analyzing two peptides and their single-point mutated variants. The gold plasmonic nanopore enabled the high-throughput acquisition of surface-enhanced Raman scattering (SERS) spectra at the single-molecule level by electrically driving analytes into hot spots. Furthermore, a statistical method based on Boolean operations was developed to extract prominent features from fluctuated single-molecule SERS spectra. The effects of the single-amino acid substitutions on both the intramolecular interactions and the peptide conformations were directly characterized by the nanopore system, and the results agreed with the predictions by AlphaFold2. This study highlights the mutual benefits of spectroscopy and nanopore technology, whereby the gold plasmonic nanopore offers a powerful tool for the structural analysis of single-molecule proteins.

3.
Nat Commun ; 15(1): 5747, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982069

RESUMEN

Friction as a fundamental physical phenomenon dominates nature and human civilization, among which the achievement of molecular rolling lubrication is desired to bring another breakthrough, like the macroscale design of wheel. Herein, an edge self-curling nanodeformation phenomenon of graphite nanosheets (GNSs) at cryogenic temperature is found, which is then used to promote the formation of graphite nanorollers in friction process towards molecular rolling lubrication. The observation of parallel nanorollers at the friction interface give the experimental evidence for the occurrence of molecular rolling lubrication, and the graphite exhibits abnormal lubrication performance in vacuum with ultra-low friction and wear at macroscale. The molecular rolling lubrication mechanism is elucidated from the electronic interaction perspective. Experiments and theoretical simulations indicate that the driving force of the self-curling is the uneven atomic shrinkage induced stress, and then the shear force promotes the intact nanoroller formation, while the constraint of atomic vibration decreases the dissipation of driving stress and favors the nanoroller formation therein. It will open up a new pathway for controlling friction at microscale and nanostructural manipulation.

4.
Nature ; 631(8021): 531-536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020034

RESUMEN

The pursuit of discovering new high-temperature superconductors that diverge from the copper-based model1-3 has profound implications for explaining mechanisms behind superconductivity and may also enable new applications4-8. Here our investigation shows that the application of pressure effectively suppresses the spin-charge order in trilayer nickelate La4Ni3O10-δ single crystals, leading to the emergence of superconductivity with a maximum critical temperature (Tc) of around 30 K at 69.0 GPa. The d.c. susceptibility measurements confirm a substantial diamagnetic response below Tc, indicating the presence of bulk superconductivity with a volume fraction exceeding 80%. In the normal state, we observe a strange metal behaviour, characterized by a linear temperature-dependent resistance extending up to 300 K. Furthermore, the layer-dependent superconductivity observed hints at a unique interlayer coupling mechanism specific to nickelates, setting them apart from cuprates in this regard. Our findings provide crucial insights into the fundamental mechanisms underpinning superconductivity, while also introducing a new material platform to explore the intricate interplay between the spin-charge order, flat band structures, interlayer coupling, strange metal behaviour and high-temperature superconductivity.

5.
Acta Pharmacol Sin ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009651

RESUMEN

Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFßR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFßR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-ß-Smad2/3 signaling pathway through directly binding to TGFßR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.

6.
Am J Transl Res ; 16(6): 2699-2710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006281

RESUMEN

BACKGROUND: Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. METHODS: Independent single nucleotide polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sensitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter plots, forest plots, and funnel plots were employed. RESULTS: MR analyses with all four methods revealed that CCOC was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by sensitivity analysis. CONCLUSIONS: Our findings indicated that CCOC dids not have a causal association with ER-associated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their mental well-being stability and optimizing the efficacy of primary disease treatment.

7.
Appl Microbiol Biotechnol ; 108(1): 417, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995388

RESUMEN

Fertilizer input is one of the effective forest management practices, which improves soil nutrients and microbial community compositions and promotes forest productivity. However, few studies have explored the response of rhizosphere soil microbial communities to various fertilization regimes across seasonal dynamics. Here, we collected the rhizosphere soil samples from Phoebe bournei plantations to investigate the response of community assemblages and microbial interactions of the soil microbiome to the short-term application of four typical fertilizer practices (including chemical fertilizer (CF), organic fertilizer (OF), compound microbial fertilizer (CMF), and no fertilizer control (CK)). The amendments of organic fertilizer and compound microbial fertilizer altered the composition of rhizosphere soil bacterial and fungal communities, respectively. The fertilization regime significantly affected bacterial diversity rather than fungal diversity, and rhizosphere fungi responded more sensitively than bacteria to season. Fertilization-induced fungal networks were more complex than bacterial networks. Stochastic processes governed both rhizosphere soil bacterial and fungal communities, and drift and dispersal limitation dominated soil fungal and bacterial communities, respectively. Collectively, these findings demonstrate contrasting responses to community assemblages and interactions of rhizosphere bacteria and fungi to fertilizer practices. The application of organic fertilization strengthens microbial interactions and changes the succession of key taxa in the rhizosphere habitat. KEY POINTS: • Fertilization altered the key taxa and microbial interaction • Organic fertilizer facilitated the turnover of rhizosphere microbial communities • Stochasticity governed soil fungal and bacterial community assembly.


Asunto(s)
Bacterias , Fertilizantes , Hongos , Microbiota , Rizosfera , Microbiología del Suelo , Fertilizantes/análisis , Hongos/clasificación , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Interacciones Microbianas , Estaciones del Año , Suelo/química
8.
ACS Appl Mater Interfaces ; 16(28): 36735-36744, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38952105

RESUMEN

The piezoelectric properties of two-dimensional semiconductor nanobubbles present remarkable potential for application in flexible optoelectronic devices, and the piezoelectric field has emerged as an efficacious pathway for both the separation and migration of photogenerated electron-hole pairs, along with inhibition of recombination. However, the comprehension and control of photogenerated carrier dynamics within nanobubbles still remain inadequate. Hence, this study is dedicated to underscore the importance of in situ detection and detailed characterization of photogenerated electron-hole pairs in nanobubbles to enrich understanding and strategic manipulation in two-dimensional semiconductor materials. Utilizing frequency modulation kelvin probe force microscopy (FM-KPFM) and strain gradient distribution techniques, the existence of a piezoelectric field in monolayer WS2 nanobubbles was confirmed. Combining w/o and with illumination FM-KPFM, second-order capacitance gradient technique and in situ nanoscale tip-enhanced photoluminescence characterization techniques, the interrelationships among the piezoelectric effect, interlayer carrier transfer, and the funneling effect for photocarrier dynamics process across various nanobubble sizes were revealed. Notably, for a WS2/graphene bubble height of 15.45 nm, a 0 mV surface potential difference was recorded in the bubble region w/o and with illumination, indicating a mutual offset of piezoelectric effect, interlayer carrier transfer, and the funneling effect. This phenomenon is prevalent in transition metal dichalcogenides materials exhibiting inversion symmetry breaking. The implication of our study is profound for advancing the understanding of the dynamics of photogenerated electron-hole pair in nonuniform strain piezoelectric systems, and offers a reliable framework for the separation and modulation of photogenerated electron-hole pair in flexible optoelectronic devices and photocatalytic applications.

9.
Huan Jing Ke Xue ; 45(6): 3512-3522, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897771

RESUMEN

Heavy metal pollution in farmland soil can affect the growth, development, and yield of vegetable crops, as well as the quality and taste of vegetables, and can be continuously transmitted and enriched through the food chain, which ultimately poses a certain hazard to human health in the long term. Therefore, in order to investigate the distribution characteristics of soil heavy metals after years of multi-crop planting of vegetables supplied to Hong Kong, predict their ecological risks, and analyze the causes of pollution formation, 477 surface soil samples of vegetable fields supplied to Hong Kong in Ningxia were collected for three consecutive years from 2019 to 2021, and the contents and distribution characteristics of eight heavy metals, namely, As, Cd, Cr, Hg, Pb, Cu, Zn, and Ni were analyzed. The soil heavy metal pollution status of vegetable fields supplied to Hong Kong in Ningxia was evaluated using the single-factor pollution index method, Nemero's comprehensive pollution index method, land accumulation index method, and potential ecological risk index method, and the sources of heavy metals in vegetable fields supplied to Hong Kong in Ningxia were analyzed using the Pearson's correlation analysis and the principal component analysis method. The results showed that the mean values of As, Cd, Cr, Hg, Cu, and Zn in the soils of Ningxia's vegetable fields were higher than the background values of Ningxia soils, but the contents of all eight heavy metals were lower than the risk screening values of domestic agricultural soils; in terms of spatial distribution, As, Cr, and Ni showed contiguous high values in the northwestern, central, and southern parts of the study area, whereas Pb, Zn, Cd, Hg, and Cu showed high values in the northwestern and southern parts of the study area. The single-factor index method and the Nemero's comprehensive pollution index method showed that the soil of Ningxia's vegetable farmland for Hong Kong was at the clean level as a whole. The results of the ground accumulation index method showed that the pollution in the study area was mainly Hg and Cd pollution, and the pollution areas were mainly concentrated in the northwest and south of the study area. The potential ecological risk index showed that Hg and Cd were the main risk elements, among which Hg was dominated by moderate, strong, and very strong ecological risks, accounting for 44.65 %, 44.65 %, and 1.26 %, respectively, and Cd was dominated by moderate and strong risks, accounting for 65.83 % and 3.56 %. The comprehensive Pearson correlation analysis and principal component analysis showed that the pollution sources of eight heavy metals could be divided into three categories, namely, natural sources:Cu, Zn, Pb, As, Ni, and Cr; agricultural sources:Cd; and industrial and agricultural sources:Hg. From a comprehensive point of view, the heavy metals of the soil in the fields of vegetables supplied to Hong Kong had not exceeded the standard, and the environmental conditions of the soil were good, such that the production of vegetables supplied to Hong Kong by Ningxia was at a safe level overall. The results of the study can provide a theoretical basis for the safe utilization of soil in vegetable fields and the green production of vegetables supplied to Hong Kong in Ningxia, which were aimed to provide help for the safe production of vegetable fields supplied to Hong Kong, the rational application of fertilizers, agronomic planning, and the adjustment of planting structure.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Verduras , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Verduras/crecimiento & desarrollo , Verduras/química , Hong Kong , Medición de Riesgo , China , Suelo/química
10.
Emerg Microbes Infect ; 13(1): 2320913, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38860446

RESUMEN

Continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), enhanced transmissibility, significant immune escape, and waning immunity call for booster vaccination. We evaluated the safety, immunogenicity, and efficacy of heterologous booster with a SARS-CoV-2 mRNA vaccine SYS6006 versus an active control vaccine in a randomized, open-label, active-controlled phase 3 trial in healthy adults aged 18 years or more who had received two or three doses of SARS-CoV-2 inactivated vaccine in China. The trial started in December 2022 and lasted for 6 months. The participants were randomized (overall ratio: 3:1) to receive one dose of SYS6006 (N = 2999) or an ancestral receptor binding region-based, alum-adjuvanted recombinant protein SARS-CoV-2 vaccine (N = 1000), including 520 participants in an immunogenicity subgroup. SYS6006 boosting showed good safety profiles with most AEs being grade 1 or 2, and induced robust wild-type and Omicron BA.5 neutralizing antibody response on Days 14 and 28, demonstrating immunogenicity superiority versus the control vaccine and meeting the primary objective. The relative vaccine efficacy against COVID-19 of any severity was 51.6% (95% CI, 35.5-63.7) for any variant, 66.8% (48.6-78.5) for BA.5, and 37.7% (2.4-60.3) for XBB, from Day 7 through Month 6. In the vaccinated and infected hybrid immune participants, the relative vaccine efficacy was 68.4% (31.1-85.5) against COVID-19 of any severity caused by a second infection. All COVID-19 cases were mild. SYS6006 heterologous boosting demonstrated good safety, superior immunogenicity and high efficacy against BA.5-associated COVID-19, and protected against XBB-associated COVID-19, particularly in the hybrid immune population.Trial registration: Chinese Clinical Trial Registry: ChiCTR2200066941.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Vacunas de ARNm , Humanos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Adulto , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Femenino , Masculino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , China , Persona de Mediana Edad , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Adulto Joven , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Adolescente , Eficacia de las Vacunas , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Pueblos del Este de Asia
11.
Chem Soc Rev ; 53(13): 6860-6916, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38833171

RESUMEN

Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.

12.
ACS Omega ; 9(22): 23613-23623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854533

RESUMEN

Titanium dioxide nanoparticles (TiO2 NPs) have been extensively utilized in various applications. However, the regulatory mechanism behind the reproductive toxicity induced by TiO2 NP exposure remains largely elusive. In this study, we employed a Drosophila model to assess potential testicular injuries during spermatogenesis and conducted bulk RNA-Seq analysis to elucidate the underlying mechanisms. Our results reveal that while prolonged exposure to lower concentrations of TiO2 NPs (0.45 mg/mL) for 30 days did not manifest reproductive toxicity, exposure at concentrations of 0.9 and 1.8 mg/mL significantly impaired spermatid elongation in Drosophila testes. Notably, bulk RNA-seq analysis revealed that TiO2 NP exposure affected multiple metabolic pathways including carbohydrate metabolism and cytochrome P450. Importantly, the intervention of glutathione (GSH) significantly protected against reproductive toxicity induced by TiO2 NP exposure, as it restored the number of Orb-positive spermatid clusters in Drosophila testes. Our study provides novel insights into the specific detrimental effects of TiO2 NP exposure on spermatid elongation through multiple metabolic alterations in Drosophila testes and highlights the protective role of GSH in countering this toxicity.

13.
Angew Chem Int Ed Engl ; : e202408996, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873975

RESUMEN

Two-dimensional Ti3C2Tx MXene materials, with metal-like conductivities and versatile terminals, have been considered to be promising surface modification materials for Zn-metal-based aqueous batteries (ZABs). However, the oxygen-rich and hybridized terminations caused by conventional methods limit their advantages in inhibiting zinc dendrite growth and reducing corrosion-related side reactions. Herein, -O-depleted, -Cl-terminated Ti3C2Tx was precisely fabricated by the molten salt electrochemical etching of Ti3AlC2, and controlled in-situ terminal replacement from -Cl to unitary -S or -Se was achieved. The as-prepared -O-depleted and unitary-terminal Ti3C2Tx as Zn anode coatings provided excellent hydrophobicity and enriched zinc-ionophilic sites, facilitating Zn2+ horizontal transport for homogeneous deposition and effectively suppressing water-induced side reactions. The as-assembled Ti3C2Sx@Zn symmetric cell achieved a cycle life of up to 4200 h at a current density and areal capacity of 2 mA cm-2 and 1 mAh cm-2, respectively, with an impressive cumulative capacity of up to 7.25 Ah cm-2 at 5 mA cm-2 // 2 mAh cm-2. These findings provide an effective electrochemical strategy for tailoring -O-depleted and unitary Ti3C2Tx surface terminals and advancing the understanding of the role of specific Ti3C2Tx surface chemistry in regulating the plating/stripping behaviors of metal ions.

14.
Infect Drug Resist ; 17: 2089-2098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828375

RESUMEN

Background: Qiguiyin decoction (QGYD) is a traditional Chinese medicine (TCM) and its combined application with levofloxacin (LVFX) has been confirmed effective in the clinical treatment of multidrug-resistant Pseudomonas aeruginosa (MDR PA) infection. This study investigated the therapeutic effect and possible mechanism of QGYD in sensitizing LVFX against MDR PA infection. Materials and Methods: Pulmonary infections were induced in rats by MDR PA. The changes in pharmacokinetics-pharmacodynamics (PK-PD) parameters of LVFX after combined with QGYD were investigated in MDR PA-induced rats. Subsequently, the correlation between PK and PD was analyzed and PK-PD models were established to elucidate the relationship between QGYD-induced alterations in LVFX metabolism and its sensitization to LVFX. Antibody chip technology was used to detect the levels of inflammatory factors, suggesting the relationship between the beneficial effect of immune regulation and the sensitization of QGYD. Results: QGYD significantly enhanced the therapeutic efficacy of LVFX against MDR PA infection. The combination of QGYD changed the PK parameters of LVFX such as Tmax, t1/2, MRT, Vd/F, CL/F and PD parameters such as MIC, AUC0-24h/MIC. Predicted results from PK-PD models demonstrated that the antibacterial effect of LVFX was significantly enhanced with the combination of QGYD, consistent with experimental findings. Antibody chip results revealed that the combination of QGYD made IL-1 ß, IL-6, TNF- α, IL-10, and MCP-1 levels more akin to those of the blank group. Conclusion: These findings indicated that QGYD could change the PK-PD behaviors of LVFX and help the body restore immune balance faster. This implied that a potential drug interaction might occur between QGYD and LVFX, leading to improved clinical efficacy when combined.

15.
Ecotoxicol Environ Saf ; 279: 116460, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781888

RESUMEN

Furan-containing compounds distribute widely in food, herbal medicines, industrial synthetic products, and environmental media. These compounds can undergo oxidative metabolism catalyzed by cytochrome P450 enzymes (CYP450) within organisms, which may produce reactive products, possibly reacting with biomolecules to induce toxic effects. In this work, we performed DFT calculations to investigate the CYP450-mediated metabolic mechanism of furan-ring oxidation using 2-methylfuran as a model substrate, meanwhile, we studied the regioselective competition of another hydroxylation reaction involving methyl group of 2-methylfuran. As a result, we found the toxicological-relevant cis-enedione product can be produced from O-addition directly via a concerted manner without formation of an epoxide intermediate as traditionally believed. Moreover, our calculations demonstrate the kinetic and thermodynamic feasibility of both furan-ring oxidation and methyl hydroxylation pathways, although the former pathway is a bit more favorable. We then constructed a linear model to predict the rate-limiting activation energies (ΔE*) of O-addition with 11 diverse furan substates based on their adiabatic ionization potentials (AIPs) and condensation Fukui functions (CFFs). The results show a good predictive ability (R2=0.94, Q2CV=0.87). Therefore, AIP and CFF with clear physichem meanings relevant to the mechanism, emerge as pivotal molecular descriptors to enable the fast prediction of furan-ring oxidation reactivities for quick insight into the toxicological risk of furans, using just ground-state calculations.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Teoría Funcional de la Densidad , Furanos , Oxidación-Reducción , Furanos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Hidroxilación , Cinética , Termodinámica
16.
Mikrochim Acta ; 191(6): 330, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744738

RESUMEN

In view of a large number of people infected with Helicobacter pylori (H. pylori) with great harm followed, there is an urgent need to develop a non-invasive, easy-to-operate, and rapid detection method, and to identify effective sterilization strategies. In this study, highly specific nanoprobes with nanozyme activity, Ag@Pt nanoparticles (NPs) with the antibody, were utilized as a novel lateral flow immunoassay (LFIA). The optical label (Ag@Pt NPs) was enhanced by the introduction of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) and compared with a gold nanoparticles (Au NPs) optical label. Under the optimal condition, Ag@Pt-LFIA and TMB-enhanced Ag@Pt-LFIA for H. pylori were successfully established, two of which were over twofold and 100-fold more sensitive than conventional visual Au NP-based LFIA, respectively. Furthermore, Ag@Pt NPs with the antibody irradiated with NIR laser (808 nm) at a power intensity of 550 mW/cm2 for 5 min exhibited a remarkable antibacterial effect. The nanoprobes could close to bacteria through effective interactions between antibodies and bacteria, thereby benefiting photothermal sterilization. Overall, Ag@Pt NPs provide promising applications in pathogen detection and therapeutic applications.


Asunto(s)
Aleaciones , Helicobacter pylori , Nanopartículas del Metal , Platino (Metal) , Plata , Helicobacter pylori/efectos de la radiación , Helicobacter pylori/efectos de los fármacos , Plata/química , Nanopartículas del Metal/química , Platino (Metal)/química , Aleaciones/química , Antibacterianos/farmacología , Antibacterianos/química , Inmunoensayo/métodos , Bencidinas/química , Oro/química , Humanos , Esterilización/métodos , Límite de Detección
17.
mSystems ; 9(6): e0138523, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38752789

RESUMEN

A dysfunction of human host genes and proteins in coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key factor impacting clinical symptoms and outcomes. Yet, a detailed understanding of human host immune responses is still incomplete. Here, we applied RNA sequencing to 94 samples of COVID-19 patients with and without hematological tumors as well as COVID-19 uninfected non-tumor individuals to obtain a comprehensive transcriptome landscape of both hematological tumor patients and non-tumor individuals. In our analysis, we further accounted for the human-SARS-CoV-2 protein interactome, human protein interactome, and human protein complex subnetworks to understand the mechanisms of SARS-CoV-2 infection and host immune responses. Our data sets enabled us to identify important SARS-CoV-2 (non-)targeted differentially expressed genes and complexes post-SARS-CoV-2 infection in both hematological tumor and non-tumor individuals. We found several unique differentially expressed genes, complexes, and functions/pathways such as blood coagulation (APOE, SERPINE1, SERPINE2, and TFPI), lipoprotein particle remodeling (APOC2, APOE, and CETP), and pro-B cell differentiation (IGHM, VPREB1, and IGLL1) during COVID-19 infection in patients with hematological tumors. In particular, APOE, a gene that is associated with both blood coagulation and lipoprotein particle remodeling, is not only upregulated in hematological tumor patients post-SARS-CoV-2 infection but also significantly expressed in acute dead patients with hematological tumors, providing clues for the design of future therapeutic strategies specifically targeting COVID-19 in patients with hematological tumors. Our data provide a rich resource for understanding the specific pathogenesis of COVID-19 in immunocompromised patients, such as those with hematological malignancies, and developing effective therapeutics for COVID-19. IMPORTANCE: A majority of previous studies focused on the characterization of coronavirus infectious disease 2019 (COVID-19) disease severity in people with normal immunity, while the characterization of COVID-19 in immunocompromised populations is still limited. Our study profiles changes in the transcriptome landscape post-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hematological tumor patients and non-tumor individuals. Furthermore, our integrative and comparative systems biology analysis of the interactome, complexome, and transcriptome provides new insights into the tumor-specific pathogenesis of COVID-19. Our findings confirm that SARS-CoV-2 potentially tends to target more non-functional host proteins to indirectly affect host immune responses in hematological tumor patients. The identified unique genes, complexes, functions/pathways, and expression patterns post-SARS-CoV-2 infection in patients with hematological tumors increase our understanding of how SARS-CoV-2 manipulates the host molecular mechanism. Our observed differential genes/complexes and clinical indicators of normal/long infection and deceased COVID-19 patients provide clues for understanding the mechanism of COVID-19 progression in hematological tumors. Finally, our study provides an important data resource that supports the increasing value of the application of publicly accessible data sets to public health.


Asunto(s)
COVID-19 , Huésped Inmunocomprometido , SARS-CoV-2 , Transcriptoma , Humanos , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Transcriptoma/genética , SARS-CoV-2/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/inmunología , Masculino , Femenino , Mapas de Interacción de Proteínas/genética , Persona de Mediana Edad , Perfilación de la Expresión Génica/métodos
18.
J Sport Health Sci ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719184

RESUMEN

The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.

19.
Mol Med ; 30(1): 69, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783226

RESUMEN

BACKGROUND: The Enoyl-CoA hydratase/isomerase family plays a crucial role in the metabolism of tumors, being crucial for maintaining the energy balance and biosynthetic needs of cancer cells. However, the enzymes within this family that are pivotal in gastric cancer (GC) remain unclear. METHODS: We employed bioinformatics techniques to identify key Enoyl-CoA hydratase/isomerase in GC. The expression of ECHDC2 and its clinical significance were validated through tissue microarray analysis. The role of ECHDC2 in GC was further assessed using colony formation assays, CCK8 assay, EDU assay, Glucose and lactic acid assay, and subcutaneous tumor experiments in nude mice. The mechanism of action of ECHDC2 was validated through Western blotting, Co-immunoprecipitation, and immunofluorescence experiments. RESULTS: Our analysis of multiple datasets indicates that low expression of ECHDC2 in GC is significantly associated with poor prognosis. Overexpression of ECHDC2 notably inhibits aerobic glycolysis and proliferation of GC cells both in vivo and in vitro. Further experiments revealed that overexpression of ECHDC2 suppresses the P38 MAPK pathway by inhibiting the protein level of MCCC2, thereby restraining glycolysis and proliferation in GC cells. Ultimately, it was discovered that ECHDC2 promotes the ubiquitination and subsequent degradation of MCCC2 protein by binding with NEDD4. CONCLUSIONS: These findings underscore the pivotal role of the ECHDC2 in regulating aerobic glycolysis and proliferation in GC cells, suggesting ECHDC2 as a potential therapeutic target in GC.


Asunto(s)
Proliferación Celular , Ubiquitina-Proteína Ligasas Nedd4 , Neoplasias Gástricas , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Enoil-CoA Hidratasa/metabolismo , Enoil-CoA Hidratasa/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis , Ratones Desnudos , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Unión Proteica , Proteolisis , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Ubiquitinación , Efecto Warburg en Oncología
20.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710565

RESUMEN

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Asunto(s)
Galactanos , Sustancias Húmicas , Hidrogeles , Mananos , Gomas de Plantas , Compuestos de Amonio Cuaternario , Suelo , Gomas de Plantas/química , Galactanos/química , Mananos/química , Hidrogeles/química , Suelo/química , Compuestos de Amonio Cuaternario/química , Fertilizantes , Preparaciones de Acción Retardada/química , Germinación/efectos de los fármacos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA