Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; : e2402842, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923165

RESUMEN

The nacre-inspired multi-nanolayer structure offers a unique combination of advanced mechanical properties, such as strength and crack tolerance, making them highly versatile for various applications. Nevertheless, a significant challenge lies in the current fabrication methods, which is difficult to create a scalable manufacturing process with precise control of hierarchical structure. In this work, a novel strategy is presented to regulate nacre-like multi-nanolayer films with the balance mechanical properties of stiffness and toughness. By utilizing a co-continuous phase structure and an extensional stress field, the hierarchical nanolayers is successfully constructed with tunable sizes using a scalable processing technique. This strategic modification allows the robust phase to function as nacre-like platelets, while the soft phase acts as a ductile connection layer, resulting in exceptional comprehensive properties. The nanolayer-structured films demonstrate excellent isotropic properties, including a tensile strength of 113.5 MPa in the machine direction and 106.3 MPa in a transverse direction. More interestingly, these films unprecedentedly exhibit a remarkable puncture resistance at the same time, up to 324.8 N mm-1, surpassing the performance of other biodegradable films. The scalable fabrication strategy holds significant promise in designing advanced bioinspired materials for diverse applications.

2.
ACS Appl Mater Interfaces ; 15(32): 38867-38877, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37542460

RESUMEN

Multilayer structures are not only applied to manipulate properties of synthetic polymer materials such as rainbow films and barrier films but also widely discovered in natural materials like nacre. In this work, in situ formation of an interconnected multi-nanolayer (IMN) structure in poly(butylene adipate-co-terephthalate) (PBAT)/poly(butylene succinate) (PBS) cocontinuous blends is designed by an extensional flow field during a "casting-thermal stretching" process, combining the properties of two components to a large extent. Hierarchical structures including phase morphology, crystal structure, and lamellar crystals in IMN films have been revealed, which clearly identifies the crucial role of extensional flow. The oriented PBAT phase in the IMN structure can be beneficial to the epitaxial growth of PBS crystals onto the PBAT nanolayers, thus improving interfacial adhesions. Furthermore, intense extensional stress can also promote crystallinity and thicken the lamellar structure. Given such distinct features in the fully biodegradable films, a simultaneous enhancement in tear strength, tensile strength, and puncture resistance has been achieved. To the best of our knowledge, the tear strength of IMN films about 285.9 kN/m is the highest level in the previous works of this system. Moreover, the proposed fabrication way of the IMN structure is facile and scalable, which is highly expected to be an efficient strategy for development of structured biodegradable polymers with excellent comprehensive properties.

3.
Biomacromolecules ; 24(7): 3127-3137, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37276461

RESUMEN

The relationship between the density of the entangled amorphous network and the ductility of oriented poly(l-lactide) (PLLA) films is explored based on the preferential hydrolysis of the amorphous regions in phosphate buffer solution (PBS). PLLA films with a balance of ductility and stiffness have been prepared by the "casting-annealing stretching" based on mechanical rejuvenation, and the structural evolution and mechanical properties at different hydrolysis durations have been identified. Various stages are found during the transition of ductility to brittleness for hydrolyzed PLLA films. First, the elongation at break for hydrolyzed PLLA films remains unchanged in the first stage of hydrolysis and then gradually decreases. Eventually, the films turn to be brittle in the third stage. The strain-hardening modulus (GR) of the hydrolyzed films is utilized to reflect the density of the entangled amorphous network, and a gradual decrease of GR with hydrolysis time indicates the decisive role of the amorphous entanglement network in the mechanical rejuvenation-induced ductility of PLLA. The quantitative relationship between the entangled amorphous network and the stress-induced ductility of PLLA films is revealed. The dependence of deformation behavior on entangled amorphous network density is closely correlated to activated primary structure during deformation. The intact chain network plays a crucial role in sufficiently activating the primary structure to yield and disentanglement during the subsequent necking. These findings could advance the understanding of the PLLA's ductility induced by mechanical rejuvenation and offer guidance for awakening the intrinsic toughness of PLLA.


Asunto(s)
Poliésteres , Poliésteres/química , Resistencia a la Tracción , Hidrólisis
4.
ACS Appl Mater Interfaces ; 15(19): 23701-23710, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37140941

RESUMEN

Polypropylene (PP) serves as an excellent commercialized polymer dielectric film owing to its high breakdown strength, excellent self-healing ability, and flexibility. However, its low dielectric constant causes the large volume of the capacitor. Constructing multicomponent polypropylene-based all-organic polymer dielectric films is a facile strategy for achieving high energy density and efficiency simultaneously. Thereinto, the interfaces between the components become the key factors that determine the energy storage performance of the dielectric films. In this work, we propose to fabricate high-performance polyamide 513 (PA513)/PP all-organic polymer dielectric films via the construction of abundant well-aligned and isolated nanofibrillar interfaces. Laudably, a significant enhancement in the breakdown strength is achieved from 573.1 MV/m of pure PP to 692.3 MV/m with 5 wt % of PA513 nanofibrils. Besides, a maximum discharge energy density of about 4.4 J/cm2 is realized with 20 wt % of PA513 nanofibrils, which is about 1.6-folds higher than pure PP. Simultaneously, the energy efficiency of samples with modulated interfaces maintains higher than 80% up to 600 MV/m, which is much higher than pure PP of about 40.7% at 550 MV/m. This work provides a new strategy to fabricate high-performance multicomponent all-organic polymer dielectric films on an industrial scale.

5.
Biomacromolecules ; 23(9): 3990-4003, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960547

RESUMEN

The hierarchical microstructure evolution of an emerging biobased odd-odd polyamide 5,13 (PA5,13) films under the thermo-mechanical field, stepping from hydrogen bond (H-bond) arrangement to the crystalline morphology, has been investigated systematically. It is found that the reorganization of H-bonds under the thermo-mechanical field plays a crucial role in the crystallization of PA5,13. Especially, it is revealed that the crystallization process under the thermo-mechanical field develops along the chain axis direction, while lamellar fragmentation occurs perpendicular to the chain axis. Consequently, a stable and well-organized H-bond arrangement and lengthened lamellae with significant orientation have been constructed. Laudably, an impressive tensile strength of about 500 MPa and modulus of about 4.7 GPa are thus achieved. The present study could provide important guidance for the industrial-scale manufacture of high-performance biobased odd-odd PAs with long polymethylene segment in the dicarboxylic unit combined with a large difference between the polymethylene segments in the dicarboxylic and diamine units.


Asunto(s)
Nylons , Enlace de Hidrógeno , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA