Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38490195

RESUMEN

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Lactobacillus , Neoplasias , Humanos , Lactobacillus/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Indoles/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
Aging Cell ; 23(4): e14081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38236004

RESUMEN

Aging-induced cognitive impairment is associated with a loss of metabolic homeostasis and plasticity. An emerging idea is that targeting key metabolites is sufficient to impact the function of other organisms. Therefore, more metabolism-targeted therapeutic intervention is needed to improve cognitive impairment. We first conducted untargeted metabolomic analyses and 16S rRNA to identify the aging-associated metabolic adaption and intestinal microbiome change. Untargeted metabolomic analyses of plasma revealed L-arginine metabolic homeostasis was altered during the aging process. Impaired L-arginine metabolic homeostasis was associated with low abundance of intestinal Akkermansia muciniphila (AKK) colonization in mice. Long-term supplementation of AKK outer membranes protein-Amuc_1100, rescued the L-arginine level and restored cognitive impairment in aging mice. Mechanically, Amuc_1100 acted directly as a source of L-arginine and enriched the L-arginine-producing bacteria. In aged brain, Amuc_1100 promoted the superoxide dismutase to alleviated oxidation stress, and increased nitric oxide, derivatives of L-arginine, to improve synaptic plasticity. Meanwhile, L-arginine repaired lipopolysaccharide-induced intestinal barrier damage and promoted growth of colon organoid. Our findings indicated that aging-related cognitive impairment was closely associated with the disorders of L-arginine metabolism. AKK-derived Amuc_1100, as a potential postbiotic, targeting the L-arginine metabolism, might provide a promising therapeutic strategy to maintain the intestinal homeostasis and cognitive function in aging.


Asunto(s)
Disfunción Cognitiva , Verrucomicrobia , Ratones , Animales , ARN Ribosómico 16S , Homeostasis , Arginina
3.
Clin Transl Med ; 13(12): e1508, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082435

RESUMEN

BACKGROUND: Immunotherapy has made significant progress in cancer treatment; however, the responsiveness to immunotherapy varies widely among patients. Growing evidence has demonstrated the role of the gut microbiota in the efficacy of immunotherapy. MAIN BODY: Herein, we summarise the changes in the microbiota in different cancers under various immunotherapies. The microbial-host signal transmission on immunotherapeutic responses and mechanisms associated with microbial translocation to tumours in the context of immunotherapy are also discussed. In addition, we have highlighted the clinical application value of methods for regulating the microbiota. Finally, we elaborate on the relationship between the microbiota, host and immunotherapy, and provide potential directions for future research. CONCLUSION: Different microbiota cause changes in the tumour microenvironment through microbial signals thereby affecting immunotherapy efficacy. Translocation of gut microbiota and the role of extraintestinal microbiota in immunotherapy deserve attention. Microbiota regulation is a novel strategy for combination therapy with immunotherapy. Although there are several aspects that deserve further refinement and exploration with regard to administration and clinical translation. Nevertheless, it is foreseeable that the microbiota will become an integral part of cancer treatment.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia/métodos , Microambiente Tumoral
4.
Adv Sci (Weinh) ; 10(36): e2303457, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37983567

RESUMEN

Gut microbiome is integral to the pathogenesis of ulcerative colitis. A novel probiotic Lactobacillus intestinalis (L. intestinalis) exerts a protective effect against dextran sodium sulfate-induced colitis in mice. Based on flow cytometry, colitis-associated Th17 cells are the target of L. intestinalis, which is supported by the lack of protective effects of L. intestinalis in T cell-null Rag1-/- mice or upon anti-IL-17-A antibody-treated mice. Although L. intestinalis exerts no direct effect on T cell differentiation, it decreases C/EBPA-driven gut epithelial SAA1 and SAA2 production, which in turn impairs Th17 cell differentiation. Cometabolism of L. intestinalis ALDH and host ALDH1A2 contributed to elevated biosynthesis of retinoic acid (RA), which accounts for the anti-colitis effect in RAR-α -mediated way. In a cohort of ulcerative colitis patients, it is observed that fecal abundance of L. intestinalis is negatively associated with the C/EBPA-SAA1/2-Th17 axis. Finally, L. intestinalis has a synergistic effect with mesalazine in alleviating murine colitis. In conclusion, L. intestinalis and associated metabolites, RA, have potential therapeutic effects for suppressing colonic inflammation by modulating the crosstalk between intestinal epithelia and immunity.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Células Th17/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Células Epiteliales/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología , Tretinoina/uso terapéutico
5.
Nat Commun ; 14(1): 6121, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777508

RESUMEN

Declined numbers and weakened functions of intestinal stem cells (ISCs) impair the integrity of the intestinal epithelium during aging. However, the impact of intestinal microbiota on ISCs in this process is unclear. Here, using premature aging mice (telomerase RNA component knockout, Terc-/-), natural aging mice, and in vitro colonoid models, we explore how heat-inactivated Bifidobacterium adolescentis (B. adolescentis) affects colon senescence. We find that B. adolescentis could mitigate colonic senescence-related changes by enhancing intestinal integrity and stimulating the regeneration of Lgr5+ ISCs via Wnt/ß-catenin signaling. Furthermore, we uncover the involvement of Paneth-like cells (PLCs) within the colonic stem-cell-supporting niche in the B. adolescentis-induced ISC regeneration. In addition, we identify soluble polysaccharides (SPS) as potential effective components of B. adolescentis. Overall, our findings reveal the role of heat-inactivated B. adolescentis in maintaining the ISCs regeneration and intestinal barrier, and propose a microbiota target for ameliorating colon senescence.


Asunto(s)
Bifidobacterium adolescentis , Ratones , Animales , Calor , Intestinos , Células Madre , Mucosa Intestinal , Colon
7.
Cancer Commun (Lond) ; 43(9): 1027-1047, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37533188

RESUMEN

BACKGROUND: The interplay between gut microbiota and tumor microenvironment (TME) in the pathogenesis of colorectal cancer (CRC) is not well explored. Here, we elucidated the functional role of Bifidobacterium adolescentis (B.a) on CRC and investigated its possible mechanism on the manipulation of cancer-associated fibroblasts (CAFs) in CRC. METHODS: Different CRC animal models and various cell line models were established to explore the function of B.a on CRC. The single-cell RNA sequencing (scRNA-seq) or flow cytometry was used to detect the cell subsets in the TME of CRC. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), or immunofluorescence staining were performed to examine the activation of Wnt signaling and growth arrest specific 1 (GAS1) on CD143+ CAFs. Chromatin immunoprecipitation quantitative real-time PCR (CHIP-qPCR) was performed to investigate the regulation of transcription factor 4 (TCF4) on GAS1. Multi-immunofluorescence assay examined the expression level of CD143 and GAS1 on tissue microarray. RESULTS: We found that B.a abundance was significantly reduced in CRC patients from two independent cohorts and the bacteria database of GMrepo. Supplementation with B.a suppressed ApcMin/+ spontaneous or AOM/DSS-induced tumorigenesis in mice. scRNA-seq revealed that B.a facilitated a subset of CD143+ CAFs by inhibiting the infiltration of Th2 cells, while promoting the TNF-alpha+ B cells in TME. CD143+ CAFs highly expressed GAS1 and exhibited tumor suppressive effect. Mechanistically, GAS1 was activated by the Wnt/ß-catenin signaling in CD143+ CAFs. B.a abundance was correlated with the expression level of CD143 and GAS1. The level of CD143+ CAFs predicted the better survival outcome in CRC patients. CONCLUSIONS: These results highlighted that B.a induced a new subset of CD143+ CAFs by Wnt signaling-regulated GAS1 to suppress tumorigenesis and provided a novel therapeutic target for probiotic-based modulation of TME in CRC.


Asunto(s)
Bifidobacterium adolescentis , Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Ratones , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Vía de Señalización Wnt/genética , Neoplasias Colorrectales/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Microambiente Tumoral
8.
J Exp Clin Cancer Res ; 42(1): 172, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464382

RESUMEN

BACKGROUND: The interplay between gut microbiota and tumor microenvironment (TME) in the pathogenesis of colorectal cancer (CRC) is largely unknown. Here, we elucidated the functional role of B. adolescentis and its possible mechanism on the manipulation of Decorin+ macrophages in colorectal cancer. METHODS: The relative abundance of B. adolescentis in tumor or para-tumor tissue of CRC patients was analyzed. The role of B. adolescentis was explored in the CRC animal models. The single cell-RNA sequencing (scRNA-seq) was used to investigate the myeloid cells subsets in TME. The expression level of TLR2/YAP axis and its downstream Decorin in macrophages were tested by Western blot and qRT-PCR. Knockdown of Decorin in Raw264.7 was performed to investigate the effect of Decorin+ macrophages on subcutaneous tumor formation. Multi-immunofluorescence assay examined the number of Decorin+ macrophages on the CRC tissue. RESULTS: We found that the abundance of B. adolescentis was significantly reduced in tumor tissue of CRC patients. Supplementation with B. adolescentis suppressed AOM/DSS-induced tumorigenesis in mice. ScRNA-seq and animal experiment revealed that B. adolescentis increased Decorin+ macrophages. Mechanically, Decorin was activated by TLR2/YAP axis in macrophages. The abundance of B. adolescentis was correlated with the number of Decorin+ macrophages and the expression level of TLR2 in tumor tissue of CRC patients. CONCLUSIONS: These results highlight that B. adolescentis induced Decorin+ macrophages and provide a novel therapeutic target for probiotic-based modulation of immune microenvironment in CRC.


Asunto(s)
Bifidobacterium adolescentis , Neoplasias Colorrectales , Animales , Ratones , Bifidobacterium adolescentis/metabolismo , Decorina/genética , Decorina/metabolismo , Decorina/farmacología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Macrófagos/metabolismo , Neoplasias Colorrectales/metabolismo , Microambiente Tumoral
9.
Gut Microbes ; 14(1): 2145843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36398889

RESUMEN

Imbalance of gut microbiota homeostasis is related to the occurrence of ulcerative colitis (UC), and probiotics are thought to modulate immune microenvironment and repair barrier function. Here, in order to reveal the interaction between UC and gut microbiota, we screened a new probiotic strain by 16S rRNA sequencing from Dextran Sulfate Sodium (DSS)-induced colitis mice, and explored the mechanism and clinical relevance. Lactobacillus johnsonii (L. johnsonii), as a potential anti-inflammatory bacterium was decreased colonization in colitis mice. Gavage L. johnsonii could alleviate colitis by specifically increasing the proportion of intestinal macrophages and the secretion of Il-10 with macrophages depleted model and in Il10-/- mice. We identified this subset of immune cells activated by L. johnsonii as CD206+ macrophagesIL-10. Mechanistically, L. johnsonii supplementation enhanced the mobilization of CD206+ macrophagesIL-10 through the activation of STAT3 in vivo and in vitro. In addition, we revealed that TLR1/2 was essential for the activation of STAT3 and the recognition of L. johnsonii by macrophages. Clinically, there was positive correlation between the abundance of L. johnsonii and the expression level of MRC1, IL10 and TLR1/2 in UC tissues. L. johnsonii could activate native macrophages into CD206+ macrophages and release IL-10 through TLR1/2-STAT3 pathway to relieve experimental colitis. L. johnsonii may serve as an immunomodulator and anti-inflammatory therapeutic target for UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Lactobacillus johnsonii , Receptor Toll-Like 1 , Animales , Ratones , Antiinflamatorios , Colitis/genética , Colitis/microbiología , Colitis/terapia , Colitis Ulcerosa/genética , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/terapia , Sulfato de Dextran/toxicidad , Interleucina-10/genética , Macrófagos , ARN Ribosómico 16S , Receptor Toll-Like 1/genética , Receptor Toll-Like 1/metabolismo
10.
Gut Microbes ; 14(1): 2038852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35220887

RESUMEN

Metastasis is the leading cause of death for colorectal cancer (CRC) patients, and the spreading tumor cells adhesion to endothelial cells is a critical step for extravasation and further distant metastasis. Previous studies have documented the important roles of gut microbiota-host interactions in the CRC malignancy, and Fusobacterium nucleatum (F. nucleatum) was reported to increase proliferation and invasive activities of CRC cells. However, the potential functions and underlying mechanisms of F. nucleatum in the interactions between CRC cells and endothelial cells and subsequent extravasation remain unclear. Here, we uncovered that F. nucleatum enhanced the adhesion of CRC cells to endothelial cells, promoted extravasation and metastasis by inducing ICAM1 expression. Mechanistically, we identified that F. nucleatum induced a new pattern recognition receptor ALPK1 to activate NF-κB pathway, resulting in the upregulation of ICAM1. Interestingly, the abundance of F. nucleatum in tumor tissues of CRC patients was positively associated with the expression levels of ALPK1 and ICAM1. Moreover, high expression of ALPK1 or ICAM1 was significantly associated with a shorter overall survival time of CRC patients. This study provides a new insight into the role of gut microbiota in engaging into the distant metastasis of CRC cells.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Neoplasias Colorrectales/microbiología , Células Endoteliales/metabolismo , Fusobacterium nucleatum/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo
11.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34591791

RESUMEN

Emerging evidence has shown that open reading frames inside long noncoding RNAs (lncRNAs) could encode micropeptides. However, their roles in cellular energy metabolism and tumor progression remain largely unknown. Here, we identified a 94 amino acid-length micropeptide encoded by lncRNA LINC00467 in colorectal cancer. We also characterized its conservation across higher mammals, localization to mitochondria, and the concerted local functions. This peptide enhanced the ATP synthase construction by interacting with the subunits α and γ (ATP5A and ATP5C), increased ATP synthase activity and mitochondrial oxygen consumption rate, and thereby promoted colorectal cancer cell proliferation. Hence, this micropeptide was termed ATP synthase-associated peptide (ASAP). Furthermore, loss of ASAP suppressed patient-derived xenograft growth with attenuated ATP synthase activity and mitochondrial ATP production. Clinically, high expression of ASAP and LINC00467 predicted poor prognosis of colorectal cancer patients. Taken together, our findings revealed a colorectal cancer-associated micropeptide as a vital player in mitochondrial metabolism and provided a therapeutic target for colorectal cancer.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Neoplasias Colorrectales/etiología , Proteínas Mitocondriales/fisiología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Péptidos/farmacología , ARN Largo no Codificante/fisiología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...