Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 572, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844832

RESUMEN

KNOXs, a type of homeobox genes that encode atypical homeobox proteins, play an essential role in the regulation of growth and development, hormonal response, and abiotic stress in plants. However, the KNOX gene family has not been explored in sweet potato. In this study, through sequence alignment, genomic structure analysis, and phylogenetic characterization, 17, 12 and 11 KNOXs in sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30) were identified. The protein physicochemical properties, chromosome localization, phylogenetic relationships, gene structure, protein interaction network, cis-elements of promoters, tissue-specific expression and expression patterns under hormone treatment and abiotic stresses of these 40 KNOX genes were systematically studied. IbKNOX4, -5, and - 6 were highly expressed in the leaves of the high-yield varieties Longshu9 and Xushu18. IbKNOX3 and IbKNOX8 in Class I were upregulated in initial storage roots compared to fibrous roots. IbKNOXs in Class M were specifically expressed in the stem tip and hardly expressed in other tissues. Moreover, IbKNOX2 and - 6, and their homologous genes were induced by PEG/mannitol and NaCl treatments. The results showed that KNOXs were involved in regulating growth and development, hormone crosstalk and abiotic stress responses between sweet potato and its two diploid relatives. This study provides a comparison of these KNOX genes in sweet potato and its two diploid relatives and a theoretical basis for functional studies.


Asunto(s)
Diploidia , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas
2.
Plant Physiol ; 194(2): 787-804, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815230

RESUMEN

Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.


Asunto(s)
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Estrés Fisiológico/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 191(1): 496-514, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377782

RESUMEN

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.


Asunto(s)
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...