Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
1.
World J Gastrointest Oncol ; 16(8): 3376-3381, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39171173

RESUMEN

Long non-coding RNAs (lncRNAs), with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity, have been found to impact colorectal cancer (CRC) through various biological processes. LncRNA expression can regulate autophagy, which plays dual roles in the initiation and progression of cancers, including CRC. Abnormal expression of lncRNAs is associated with the emergence of chemoresistance. Moreover, it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance. Two recent studies titled "Human ß-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506" and "Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription" revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC, respectively. In this editorial, we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.

2.
Front Pharmacol ; 15: 1406862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156102

RESUMEN

Background: Breast cancer lung metastasis occurs at a high rate and at an early stage, and is the leading cause of death in breast cancer patients. The aim of this study was to investigate the effect of Ru'ai Shuhou Recipe (RSR) intervention on the occurrence of recurrent metastases, especially lung metastases, in postoperative patients with breast cancer. Materials and Methods: A retrospective cohort study was implemented at Shuguang Hospital of Shanghai University of Traditional Chinese Medicine in China between January 2014 to January 2019. Female patients were included according to the propensity score matching (PSM) method and balanced on the basis of general and clinical information such as age, body mass index, neo-adjuvant therapy, and surgical approach. Patients with pathological diagnosis of breast cancer were included in this study. Breast cancer patients were divided into exposed and non-exposed groups according to whether they took RSR-based botanical drugs after surgery. Kaplan-Meier survival analysis and Cox survival analysis to explore the relationship between RSR and 5-year disease-free survival and incidence of lung metastases in breast cancer patients after surgery. Results: 360 female patients were assessed and 190 patients were included in the study after PSM (95 in each of the exposed and non-exposed groups). Of the 190 patients after PSM, 55.79% were over 50 years of age. The mean follow-up time was 60.55 ± 14.82 months in the exposed group and 57.12 ± 16.37 months in the non-exposed group. There was no significant baseline characteristics difference between two groups. Kaplan-Meier analysis showed that the 5-year incidence of lung metastases was significantly lower in the exposed group, and the disease-free survival of patients was significantly longer. Cox univariate and multivariate analysis showed that neoadjuvant chemotherapy and lymph node metastasis were independent risk factors for the development of breast cancer lung metastasis, with risk ratios of 17.188 and 5.812, while RSR treatment was an independent protective factor against the development of breast cancer lung metastasis, with a risk ratio of 0.290. Conclusion: Standard biomedical treatment combined with RSR intervention can better prevent breast cancer recurrence and metastasis, reduce the incidence of lung metastasis in patients, and improve long-term prognosis.

3.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3894-3900, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099363

RESUMEN

This study explored the effect of Tianma Gouteng Decoction on oxidative stress induced by angiotensin Ⅱ(AngⅡ) in vascular smooth muscle cell(VSMC) and its molecular mechanism. Primary rat VSMC were cultured using tissue block method, and VSMC were identified by α-actin immunofluorescence staining. AngⅡ at a concentration of 1×10~(-6) mol·L~(-1) was used as the stimulating factor, and Sprague Dawley(SD) rats were orally administered with Tianma Gouteng Decoction to prepare drug serum. Rat VSMC were divided into normal group, model group, Chinese medicine group, and inhibitor(3-methyladenine, 3-MA) group. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation activity. Bromodeoxyuridine(BrdU) flow cytometry was used to detect cell cycle. Transwell assay was used to detect cell migration ability. Enzyme-linked immunosorbent assay(ELISA) was used to detect the activity of superoxide dismutase(SOD), catalase(CAT), and malondialdehyde(MDA) in VSMC. The intracellular reactive oxygen species(ROS) fluorescence intensity was detected using DCFH-DA fluorescent probe. Western blot was used to detect the expression of PTEN-induced putative kinase 1(PINK1), Parkin, p62, and microtubule-associated protein 1A/1B-light chain 3(LC3-Ⅱ) proteins in VSMC. The results showed that Tianma Gouteng Decoction-containing serum at a concentration of 8% could significantly inhibit VSMC growth after 48 hours of intervention. Compared with the normal group, the model group showed significantly increased cell proliferation activity and migration, significantly decreased levels of SOD and CAT, significantly increased levels of MDA, significantly enhanced ROS fluorescence intensity, significantly decreased expression of PINK1, Parkin, and LC3-Ⅱ proteins, and significantly increased expression of p62 protein. Compared with the model group, the Chinese medicine group showed significantly reduced cell proliferation activity and migration, significantly increased levels of SOD and CAT, significantly decreased levels of MDA, significantly weakened ROS fluorescence intensity, significantly increased expression of PINK1, Parkin, and LC3-Ⅱ proteins, and significantly decreased expression of p62 protein. Compared with the Chinese medicine group, the addition of the mitochondrial autophagy inhibitor 3-MA could block the intervention of Tianma Gouteng Decoction-containing serum on VSMC proliferation, migration, mitochondrial autophagy, and oxidative stress levels, with statistically significant differences. In summary, Tianma Gouteng Decoction has good antioxidant activity and can inhibit cell proliferation and migration. Its mechanism of action may be related to the activation of the mitochondrial autophagy PINK1/Parkin signaling pathway.


Asunto(s)
Angiotensina II , Proliferación Celular , Medicamentos Herbarios Chinos , Músculo Liso Vascular , Estrés Oxidativo , Proteínas Quinasas , Ratas Sprague-Dawley , Ubiquitina-Proteína Ligasas , Animales , Medicamentos Herbarios Chinos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Masculino , Proliferación Celular/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Movimiento Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Cultivadas , Superóxido Dismutasa/metabolismo
4.
Neurosci Res ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025266

RESUMEN

Our previous studies have reported that hydrogen sulfide (H2S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H2S-ameliorated DACD and further explore its potential mechanism. We found that H2S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H2S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H2S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H2S-ameliorated DACD by improving hippocampal synaptic plasticity.

5.
Anal Chim Acta ; 1318: 342952, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067907

RESUMEN

Defects on nanomaterials can effectively enhance the performance of electrochemical detection, but an excessive number of defects may have an adverse effect. In this study, MoS2 nanosheets were synthesized using a hydrothermal synthesis method. By controlling the calcination temperature, MoS2-7H, calcined at 700 °C under H2/Ar2, exhibited an optimal ratio of "point" defects to "plane" defects, resulting in excellent detection performance for mercury ions (Hg(II)). In general, the sulfur vacancies (SV) and undercoordinated Mo generated after calcination of MoS2 significantly promotes the adsorption process and redox of Hg(II) by increasing surface chemical activity, providing additional adsorption sites and adjusting surface charge status to accelerate the catalytic redox of Hg(II). The prepared MoS2-7H-modified electrode showed a sensitivity of 18.25 µA µM-1 and a low limit of detection (LOD) of 6.60 nM towards Hg(II). MoS2-7H also demonstrated a good anti-interference, stability, and exhibited a strong current response in real water samples. The modulation to obtain appropriate number of defects in MoS2 holds promise as a prospective electrode modification material for the electroanalysis.

6.
Rev Cardiovasc Med ; 25(6): 213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39076322

RESUMEN

Anthracyclines are effective anticancer drugs; however, their use is restricted because of their dose-dependent, time-dependent and irreversible myocardial toxicity. The mechanism of anthracycline cardiotoxicity has been widely studied but remains unclear. Protein quality control is crucial to the stability of the intracellular environment and, ultimately, to the heart because cardiomyocytes are terminally differentiated. Two evolutionarily conserved mechanisms, autophagy, and the ubiquitin-proteasome system, synergistically degrade misfolded proteins and remove defective organelles. Recent studies demonstrated the importance of these mechanisms. Further studies will reveal the detailed metabolic pathway and metabolic control of the protein quality control mechanism integrated into anthracycline-induced cardiotoxicity. This review provides theoretical support for clinicians in the application and management of anthracyclines.

7.
Phytomedicine ; 132: 155828, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38905847

RESUMEN

BACKGROUND: Immunogenic cell death (ICD) is a specific form of regulated cell death induced by a variety of stressors. During ICD, the dying cancer cells release damage-associated molecular patterns (DAMPs), which promote dendritic cell maturation and tumor antigen presentation, subsequently triggering a T-cell-mediated anti-tumor immune response. In recent years, a growing number of studies have demonstrated the potential of natural products to induce ICD and enhance tumor cell immunogenicity. Moreover, there is an increasing interest in identifying new ICD inducers from natural products. PURPOSE: This study aimed to emphasize the potential of natural products and their derivatives as ICD inducers to promote research on using natural products in cancer therapy and provide ideas for future novel immunotherapies based on ICD induction. METHOD: This review included a thorough search of the PubMed, Web of Science, Scopus, and Google Scholar databases to identify natural products with ICD-inducing capabilities. A comprehensive search for clinical trials on natural ICD inducers was also conducted using ClinicalTrials.gov, as well as the approved patents using the Espacenet and CNKI Patent Database. RESULTS: Natural compounds that induce ICD can be categorized into several groups, such as polyphenols, flavonoids, terpenoids, and alkaloids. Natural products can induce the release of DAMPs by triggering endoplasmic reticulum stress, activation of autophagy-related pathways, and reactive oxygen species generation, etc. Ultimately, they activate anti-tumor immune response and improve the efficacy of cancer treatments. CONCLUSION: A growing number of ICD inducers from natural products with promising anti-cancer potential have been identified. The detailed information presented in this review will contribute to the further development of natural ICD inducers and cancer treatment strategies based on ICD-induced responses.


Asunto(s)
Productos Biológicos , Muerte Celular Inmunogénica , Neoplasias , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Muerte Celular Inmunogénica/efectos de los fármacos , Alcaloides/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inmunoterapia/métodos , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Polifenoles/farmacología , Terpenos/farmacología
8.
J Extracell Vesicles ; 13(6): e12463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868945

RESUMEN

Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Biomarcadores/metabolismo , Citometría de Flujo/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/análisis , Células Cultivadas , Antígenos CD/metabolismo
9.
Cell Death Dis ; 15(6): 460, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942760

RESUMEN

Lung cancer stands as the leading cause of mortality among all types of tumors, with over 40% of cases being lung adenocarcinoma (LUAD). Family with sequence similarity 83 member A (FAM83A) emerges as a notable focus due to its frequent overexpression in LUAD. Despite this, the precise role of FAM83A remains elusive. This study addresses this gap by unveiling the crucial involvement of FAM83A in maintaining the cancer stem cell-like (CSC-like) phenotype of LUAD. Through a global proteomics analysis, the study identifies human epidermal growth factor receptor 2 (HER2 or ErbB2) as a crucial target of FAM83A. Mechanistically, FAM83A facilitated ErbB2 expression at the posttranslational modification level via the E3 ubiquitin ligase STUB1 (STIP1-homologous U-Box containing protein 1). More importantly, the interaction between FAM83A and ErbB2 at Arg241 promotes calcineurin (CALN)-mediated dephosphorylation of ErbB2, followed by inhibition of STUB1-mediated ubiquitin-proteasomal ErbB2 degradation. The maintenance of the CSC-like phenotype by FAM83A, achieved through the posttranslational regulation of ErbB2, offers valuable insights for identifying potential therapeutic targets for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Proteínas de Neoplasias , Células Madre Neoplásicas , Fenotipo , Receptor ErbB-2 , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Femenino
10.
Sheng Li Xue Bao ; 76(3): 353-364, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38939930

RESUMEN

The role of the aryl hydrocarbon receptor (AhR) in regulating oxidative stress and immune responses has been increasingly recognized. However, its involvement in depression and the underlying mechanisms remain poorly understood. This study aimed to investigate the effect of 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous AhR ligand, on a lipopolysaccharide (LPS)-induced depression model and the underlying mechanism. After being treated with FICZ (50 mg/kg), male C57BL/6J mice received intraperitoneal injection of LPS and underwent behavioral tests 24 h later. The levels of inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, were measured in the hippocampus and serum using enzyme-linked immunosorbent assay (ELISA). The expression levels of CYP1A1, AhR and NLRP3 were analyzed using qPCR and Western blot. The results showed that, compared with control group, LPS alone significantly down-regulated the expression levels of CYP1A1 mRNA and AhR protein in the hippocampus of mice, reduced glucose preference, prolonged immobility time in forced swimming test, increased IL-6 and IL-1ß levels in the hippocampus, increased serum IL-1ß level, and up-regulated NLRP3 mRNA and protein expression levels in mouse hippocampus, while FICZ significantly reversed the aforementioned effects of LPS. These findings suggest that AhR activation attenuates the inflammatory response associated with depression and modulates the expression of NLRP3. The present study provides novel insights into the role of AhR in the development of depression, and presents AhR as a potential therapeutic target for the treatment of depression.


Asunto(s)
Carbazoles , Citocromo P-450 CYP1A1 , Depresión , Hipocampo , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Hidrocarburo de Aril , Animales , Masculino , Ratones , Conducta Animal , Carbazoles/farmacología , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Citocinas/metabolismo , Depresión/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Neurochem Res ; 49(9): 2491-2504, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38862726

RESUMEN

Idebenone, an antioxidant used in treating oxidative damage-related diseases, has unclear neuroprotective mechanisms. Oxidative stress affects cell and mitochondrial membranes, altering Adp-ribosyl cyclase (CD38) and Silent message regulator 3 (SIRT3) protein expression and possibly impacting SIRT3's ability to deacetylate Tumor protein p53 (P53). This study explores the relationship between CD38, SIRT3, and P53 in H2O2-injured HT22 cells treated with Idebenone. Apoptosis was detected using flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining after determining appropriate H2O2 and Idebenone concentrations.In this study, Idebenone was found to reduce apoptosis and decrease P53 and Caspase3 expression in H2O2-injured HT22 cells by detecting apoptosis-related protein expression. Through bioinformatics methods, CD38 was identified as the target of Idebenone, and it further demonstrated that Idebenone decreased the expression of CD38 and increased the level of SIRT3. An increased NAD+/NADH ratio was detected, suggesting Idebenone induces SIRT3 expression and protects HT22 cells by decreasing apoptosis-related proteins. Knocking down SIRT3 downregulated acetylated P53 (P53Ac), indicating SIRT3's importance in P53 deacetylation.These results supported that CD38 was used as a target of Idebenone to up-regulate SIRT3 to deacetylate activated P53, thereby protecting HT22 cells from oxidative stress injury. Thus, Idebenone is a drug that may show great potential in protecting against reactive oxygen species (ROS) induced diseases such as Parkinson's disease, and Alzheimer's disease. And it might be able to compensate for some of the defects associated with CD38-related diseases.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Apoptosis , Estrés Oxidativo , Sirtuina 3 , Proteína p53 Supresora de Tumor , Ubiquinona , Proteína p53 Supresora de Tumor/metabolismo , Estrés Oxidativo/efectos de los fármacos , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ratones , Sirtuina 3/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Peróxido de Hidrógeno/toxicidad , Antioxidantes/farmacología , Glicoproteínas de Membrana/metabolismo , Fármacos Neuroprotectores/farmacología
12.
Clin Chim Acta ; 561: 119814, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879063

RESUMEN

BACKGROUND: Hepatocellular cancer (HCC) is one of the most harmful tumors to human health. Currently, there is still a lack of highly sensitive and specific HCC biomarkers in clinical practice. In this study, we aimed to explore the diagnostic performance of prostaglandin A2 (PGA2) for the early detection of HCC. METHODS: Untargeted metabolomic analyses on normal control (NC) and HCC participants in the discovery cohort were performed, and PGA2 was identified to be dysregulated in HCC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detecting serum PGA2 was established and applied to validate the dysregulation of PGA2 in another independent validation cohort. Receiver operating characteristic (ROC), decision curve analysis (DCA) and some other statistical analyses were performed to evaluate the diagnostic performance of PGA2 for HCC. RESULTS: At first, PGA2 was found to be dysregulated in HCC in untargeted metabolomic analyses. Then a precise quantitative LC-MS/MS method for PGA2 has been established and has passed rigorous method validation. Targeted PGA2 analyses confirmed that serum PGA2 was decreased in HCC compared to normal-risk NC and high-risk cirrhosis group. Subsequently, PGA2 was identified as a novel biomarker for the diagnosis of HCC, with an area under the ROC curve (AUC) of 0.911 for differentiating HCC from the combined NC + cirrhosis groups. In addition, PGA2 exhibited high performance for differentiating small-size (AUC = 0.924), early-stage (AUC = 0.917) and AFP (-) HCC (AUC = 0.909) from the control groups. The combination of PGA2 and AFP might be useful in the surveillance of risk population for HCC and early diagnosis of HCC. CONCLUSION: This study establishes that PGA2 might be a novel diagnostic biomarker for HCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangre , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangre , Masculino , Femenino , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Cromatografía Liquida , Curva ROC
13.
Sci Total Environ ; 931: 172866, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705291

RESUMEN

Tetracycline antibiotics (TCs) are extensively used in clinical medicine, animal husbandry, and aquaculture because of their cost-effectiveness and high antibacterial efficacy. However, the presence of TCs residues in the environment poses risks to humans. In this study, an inner filter effect (IFE) fluorescent probe, 2,2'-(ethane-1,2-diylbis((2-((2-methylquinolin-8-yl)amino)-2-oxoethyl)azanediyl))diacetic acid (MQDA), was developed for the rapid detection of Eu3+ within 30 s. And its complex [MQDA-Eu3+] was successfully used for the detection of TCs. Upon coordination of a carboxyl of MQDA with Eu3+ to form a [MQDA-Eu3+] complex, the carboxyl served as an antenna ligand for the effective detection of Eu3+ to intensify the emission intensity of MQDA via "antenna effect", the process was the energy absorbed by TCs via UV excitation was effectively transferred to Eu3+. Fluorescence quenching of the [MQDA-Eu3+] complex was caused by the IFE in multicolor fluorescence systems. The limits of detection of [MQDA-Eu3+] for oxytetracycline, chlorotetracycline hydrochloride, and tetracycline were 0.80, 0.93, and 1.7 µM in DMSO/HEPES (7:3, v/v, pH = 7.0), respectively. [MQDA-Eu3+] demonstrated sensitive detection of TCs in environmental and food samples with satisfactory recoveries and exhibited excellent imaging capabilities for TCs in living cells and zebrafish with low cytotoxicity. The proposed approach demonstrated considerable potential for the quantitative detection of TCs.


Asunto(s)
Antibacterianos , Europio , Colorantes Fluorescentes , Antibacterianos/análisis , Colorantes Fluorescentes/química , Europio/química , Tetraciclina/análisis , Tetraciclinas/análisis , Animales , Contaminantes Químicos del Agua/análisis , Fluorescencia , Monitoreo del Ambiente/métodos , Espectrometría de Fluorescencia/métodos
14.
J Multidiscip Healthc ; 17: 2021-2030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716371

RESUMEN

Objective: The objective of this study was to investigate the risk factors associated with cesarean scar pregnancy (CSP) and to develop a model for predicting intraoperative bleeding risk. Methods: We retrospectively analyzed the clinical data of 208 patients with CSP who were admitted to the People's Hospital of Leshan between January 2018 and December 2022. Based on whether intraoperative bleeding was ≥ 200 mL, we categorized them into two groups for comparative analysis: the excessive bleeding group (n = 27) and the control group (n = 181). Identifying relevant factors, we constructed a prediction model and created a nomogram. Results: We observed that there were significant differences between the two groups in several parameters. These included the time of menstrual cessation (P = 0.002), maximum diameter of the gestational sac (P < 0.001), thickness of the myometrium at the uterine scar (P = 0.001), pre-treatment blood HCG levels (P = 0.016), and the grade of blood flow signals (P < 0.001). We consolidated the above data and constructed a clinical prediction model. The model exhibited favorable results in terms of predictive efficacy, discriminative ability (C-index = 0.894, specificity = 0.834, sensitivity = 0.852), calibration precision (mean absolute error = 0.018), and clinical decision-making utility, indicating its effectiveness. Conclusion: The clinical prediction model related to the risk of hemorrhage that we developed in this experiment can assist in the development of appropriate interventions and effectively improve patient prognosis.

15.
Vaccine ; 42(19): 4030-4039, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796326

RESUMEN

We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra Rotavirus , Vacunas de Productos Inactivados , Humanos , Adulto , Método Doble Ciego , Masculino , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Persona de Mediana Edad , Adulto Joven , Adolescente , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/efectos adversos , China , Inmunogenicidad Vacunal , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/inmunología , Rotavirus/inmunología , Voluntarios Sanos , Pruebas de Neutralización
16.
Heliyon ; 10(7): e28629, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590883

RESUMEN

Objectives: The present study was conducted to explore the performance of micronutrients in the prediction and prevention of coronavirus disease 2019 (COVID-19). Methods: This is an observational case-control study. 149 normal controls (NCs) and 214 COVID-19 patients were included in this study. Fat-soluble and water-soluble vitamins were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and inorganic elements were detected by inductively coupled plasma-mass spectrometry (ICP-MS) analysis. A logistic regression model based on six micronutrients were constructed using DxAI platform. Results: Many micronutrients were dysregulated in COVID-19 compared to normal control (NC). 25-Hydroxyvitamin D3 [25(OH)D3], magnesium (Mg), copper (Cu), calcium (Ca) and vitamin B6 (pyridoxic acid, PA) were significantly independent risk factors for COVID-19. The logistic regression model consisted of 25(OH)D3, Mg, Cu, Ca, vitamin B5 (VB5) and PA was developed, and displayed a strong discriminative capability to differentiate COVID-19 patients from NC individuals [area under the receiver operating characteristic curve (AUROC) = 0.901]. In addition, the model had great predictive ability in discriminating mild/normal COVID-19 patients from NC individuals (AUROC = 0.883). Conclusions: Our study showed that micronutrients were associated with COVID-19, and our logistic regression model based on six micronutrients has potential in clinical management of COVID-19, and will be useful for prediction of COVID-19 and screening of high-risk population.

17.
Plant Physiol Biochem ; 210: 108615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631158

RESUMEN

Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.


Asunto(s)
Citrus , Regulación de la Expresión Génica de las Plantas , Magnesio , Plantones , Citrus/metabolismo , Citrus/genética , Plantones/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Magnesio/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Deficiencia de Magnesio/metabolismo , Hojas de la Planta/metabolismo , Estrés Fisiológico , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
18.
Front Immunol ; 15: 1379853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650937

RESUMEN

Introduction: Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods: HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results: In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion: iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.


Asunto(s)
Fenotipo , Animales , Ratones , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/inmunología , Proliferación Celular , Línea Celular Tumoral , Ratones Endogámicos C57BL , Apoptosis , Fagocitosis , Movimiento Celular/inmunología
19.
Food Chem ; 447: 138937, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492295

RESUMEN

Owing to the lack of selection and limited intelligence in mechanical picking, some immature tomatoes that contain alkaloids are thrown away. Tomatine alkaloids are steroidal alkaloids naturally present in Solanaceae plants, which are distributed in small amounts in immature tomato fruits and decrease as the fruits ripen. Tomato glycoalkaloids are harmful to human health. However, in small quantities, there is some evidence that these compounds might be beneficial, as other non-antioxidant bioactivities. This article considers recent research on the biological effects of tomato glycoalkaloids in immature tomatoes, providing reference value for the potential development of these compounds.


Asunto(s)
Alcaloides , Solanaceae , Solanum lycopersicum , Humanos , Tomatina/toxicidad , Alcaloides/toxicidad , Extractos Vegetales/farmacología
20.
Arch Pharm Res ; 47(3): 165-218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493280

RESUMEN

Astragali Radix (A. Radix) is the dried root of Astragalus membranaceus var. mongholicus (Bge) Hsiao or Astragalus membranaceus (Fisch.) Bge., belonging to the family Leguminosae, which is mainly distributed in China. A. Radix has been consumed as a tonic in China for more than 2000 years because of its medicinal effects of invigorating the spleen and replenishing qi. Currently, more than 400 natural compounds have been isolated and identified from A. Radix, mainly including saponins, flavonoids, phenylpropanoids, alkaloids, and others. Modern pharmacological studies have shown that A. Radix has anti-tumor, anti-inflammatory, immunomodulatory, anti-atherosclerotic, cardioprotective, anti-hypertensive, and anti-aging effects. It has been clinically used in the treatment of tumors, cardiovascular diseases, and cerebrovascular complications associated with diabetes with few side effects and high safety. This paper reviewed the progress of research on its chemical constituents, pharmacological effects, clinical applications, developing applications, and toxicology, which provides a basis for the better development and utilization of A. Radix.


Asunto(s)
Planta del Astrágalo , Botánica , Medicamentos Herbarios Chinos , Saponinas , Planta del Astrágalo/química , Astragalus propinquus/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Saponinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA