Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(30): e2212114, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36876459

RESUMEN

Cartilage equivalents from hydrogels containing chondrocytes exhibit excellent potential in hyaline cartilage regeneration, yet current approaches have limited success at reconstituting the architecture to culture nondifferentiated chondrocytes in vitro. In this study, specially designed lacunar hyaluronic acid microcarriers (LHAMCs) with mechanotransductive conditions that rapidly form stable hyaluronic acid (HA) N-hydroxy succinimide ester (NHS-ester) are reported. Specifically, carboxyl-functionalized HA is linked to collagen type I via amide-crosslinking, and gas foaming produced by ammonium bicarbonate forms concave surface of the microcarriers. The temporal 3D culture of chondrocytes on LHAMCs uniquely remodels the extracellular matrix to induce hyaline cartilaginous microtissue regeneration and prevents an anaerobic-to-aerobic metabolism transition in response to the geometric constraints. Furthermore, by inhibiting the canonical Wnt pathway, LHAMCs prevent ß-catenin translocation to the nucleus, repressing chondrocyte dedifferentiation. Additionally, the subcutaneous implantation model indicates that LHAMCs display favorable cytocompatibility and drive robust hyaline chondrocyte-derived neocartilage formation. These findings reveal a novel strategy for regulating chondrocyte dedifferentiation. The current study paves the way for a better understanding of geometrical insight clues into mechanotransduction interaction in regulating cell fate, opening new avenues for advancing tissue engineering.


Asunto(s)
Hialina , Ácido Hialurónico , Ácido Hialurónico/metabolismo , Mecanotransducción Celular , Cartílago , Condrocitos , Ingeniería de Tejidos
2.
Bioact Mater ; 17: 81-108, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35386447

RESUMEN

Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...