Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2313570, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693828

RESUMEN

Ternary copper (Cu) halides are promising candidates for replacing toxic lead halides in the field of perovskite light-emitting diodes (LEDs) toward practical applications. However, the electroluminescent performance of Cu halide-based LEDs remains a great challenge due to the presence of serious nonradiative recombination and inefficient charge transport in Cu halide emitters. Here, the rational design of host-guest [dppb]2Cu2I2 (dppb denotes 1,2-bis[diphenylphosphino]benzene) emitters and its utility in fabricating efficient Cu halide-based green LEDs that show a high external quantum efficiency (EQE) of 13.39% are reported. The host-guest [dppb]2Cu2I2 emitters with mCP (1,3-bis(N-carbazolyl)benzene) host demonstrate a significant improvement of carrier radiative recombination efficiency, with the photoluminescence quantum yield increased by nearly ten times, which is rooted in the efficient energy transfer and type-I energy level alignment between [dppb]2Cu2I2 and mCP. Moreover, the charge-transporting mCP host can raise the carrier mobility of [dppb]2Cu2I2 films, thereby enhancing the charge transport and recombination. More importantly, this strategy enables a large-area prototype LED with a record-breaking area up to 81 cm2, along with a decent EQE of 10.02% and uniform luminance. It is believed these results represent an encouraging stepping stone to bring Cu halide-based LEDs from the laboratory toward commercial lighting and display panels.

2.
Opt Lett ; 49(6): 1504-1507, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489436

RESUMEN

Mn4+-activated oxide phosphors with low cost and unique luminescent properties have been considered as a promising candidate for various optical applications, while the search for high thermal stable red-emitting phosphors is still a huge challenge. In our work, we find and unveil the relationship between luminescence thermal quenching behavior and thermal expansion coefficients (α/10-6 K-1) based on double-perovskite niobate phosphors Ca2LnNbO6:Mn4+ (Ln3+ = Y3+, Gd3+, La3+, or Lu3+). It can be concluded that the phosphors with low thermal expansion coefficients contribute to high thermal stability. Subsequently, Ca2LuNbO6:Mn4+ accomplishes accurate temperature testing and high-CRI white light-emitting diodes. Thus, a thermal expansion coefficient strategy is a new guide to select the appropriate substrate with high thermal stability for an Mn4+-activated emitter.

3.
Mater Horiz ; 11(5): 1294-1304, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38168978

RESUMEN

Lead halide perovskite nanocrystals (NCs) are highly promising for backlighting display applications due to their high photoluminescence quantum yields (PLQYs) and wide color gamut values. However, the practical applications of blue emitters are limited due to the toxicity of lead, unstable structure, and unsatisfactory PLQY. Herein, we report the successful synthesis of divalent europium-based perovskite CsEuBr3 NCs using a modified hot injection method. By optimizing the reaction conditions, the CsEuBr3 NCs display a deep-blue emission at 443 nm with a full width at half maximum (FWHM) of 28.5 nm, a color purity of 99.61%, and a record high PLQY of 93.51% for deep-blue narrow-band emissive lead-free perovskite NCs as far as we know. The emission mechanism of CsEuBr3 NCs is proved through first-principles calculations and spectral analysis. Notably, the CsEuBr3 NCs exhibit remarkable stability when exposed to high temperature, UV irradiation, and long-term sealed storage. The incorporation of CsEuBr3 NCs into polydimethylsiloxane (PDMS) serving as a converter is utilized for white light-emitting devices (WLEDs). WLEDs for backlight displays achieves a wide color gamut of 127.1% of the National Television System Committee standard (NTSC), 94.9% coverage of the ITU-R Recommendation BT.2020 (Rec.2020), and their half-lifetime is up to 1677 h, providing a promising pathway for highly efficient, environment-friendly and practical liquid crystal display backlights.

4.
Adv Mater ; 36(11): e2309452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088453

RESUMEN

Luminescent nanothermometry, particularly the one based on ratiometric, has sparked intense research for non-invasive in vivo or intracellular temperature mapping, empowering their uses as diagnosis tools in biomedicine. However, ratiometric detection still suffers from biased sensing induced by wavelength-dependent tissue absorption and scattering, low thermal sensitivity (Sr ), and lack of imaging depth information. Herein, this work constructs an ultrasensitive NIR-II ratiometric nanothermometer with self-calibrating ability for 3D in vivo thermographic imaging, in which temperature-insensitive lanthanide nanocrystals and strongly temperature-quenched Ag2 S quantum dots are co-assembled to form a hybrid nanocomposite material. Precise control over the amount ratio between two sub-materials enables the manipulation of heat-activated back energy transfer from Ag2 S to Yb3+ in lanthanide nanoparticles, thereby rendering Sr up to 7.8% °C-1 at 43.5 °C, and higher than 6.5% °C-1 over the entire physiological temperature range. Moreover, the luminescence intensity ratio between two separated spectral regions within the narrow Yb3+ emission peak is used to determine the depth information of nanothermometers in living mice and correct the effect of tissue depth on 2D thermographic imaging, and therefore allows a proof-of-concept demonstration of accurate 3D in vivo thermographic imaging, constituting a solid step toward the development of advanced ratiometric nanothermometry for biological applications.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas del Metal , Puntos Cuánticos , Animales , Ratones , Elementos de la Serie de los Lantanoides/química , Temperatura , Puntos Cuánticos/química , Calor
5.
Adv Mater ; 35(44): e2305495, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37603794

RESUMEN

Fluorescence thermometry has been propelled to the forefront of scientific attention due to its high spatial resolution and remote non-invasive detection. However, recent generations of thermometers still suffer from limited thermal sensitivity (Sr ) below 10% change per Kelvin. Herein, this work presents an ideal temperature-responsive fluorescence material through Te4+ -doped 0D Cs2 ScCl5 ·H2 O, in which isolated polyhedrons endow highly localized electronic structures, and the strong electron-phonon coupling facilitates the formation of self-trapped excitons (STEs). With rising temperature, the dramatic asymmetric expansion of the soft lattice induces increased defects, strong exciton-phonon coupling, and low thermal activation energy, which evokes a rapid de-trapping process of STEs, enabling several orders of magnitude changes in the fluorescence lifetime over a narrow temperature range. After regulating the de-trapping process with different Te4+ doping, a record-high Sr (27.36% K-1 ) of fluorescence lifetime-based detection is achieved at 325 K. The robust stability against multiple heating/cooling cycles and long-term measurements enables a low temperature uncertainty of 0.067 K. Further, the developed thermometers are demonstrated for the remote local monitoring of operating temperature on internal electronic components. It is believed that this work constitutes a solid step towards building the next generation of ultrasensitive thermometers based on low-dimensional metal halides.

6.
Nano Lett ; 23(7): 2862-2869, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926957

RESUMEN

Lifetime-based NIR luminescent nanothermometry is ideally suited for temperature detection in living cells and in vivo, but the thermal sensitivity (Sr) modulation remains elusive. Herein, a thorough investigation is performed to unveil the shell effect on lifetime-based Sr by finely controlling the shell thickness of lanthanide-doped core-shell-shell nanoparticles. Owing to the space-dependent energy transfer and back energy transfer between Nd3+ and Yb3+ as well as the energy migration to surface quenchers, both active and inert shells can regulate the thermal-dependent nonradiative decays and NIR luminescence lifetime of Yb3+, which in turn modulates the Sr from 0.56% to 1.54% °C-1. After poly(acrylic acid) modification of the optimal architecture, the tiny nanoprobes possess robust stability to fluctuations in the microenvironment, which enables accurate temperature mapping of inflammation in the internal liver organ of living mouse. This work will provide new insights for optimizing Sr and guidance for precise temperature measurements in vivo.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Animales , Ratones , Temperatura , Luminiscencia , Hígado
7.
Adv Sci (Weinh) ; 10(15): e2207331, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36825674

RESUMEN

Application of long-persistent luminescence (LPL) materials in many technological fields is in the spotlight. However, the exploration of undoped persistent luminescent materials with high emission efficiency, robust stability, and long persistent duration remains challenging. Here, inorganic cesium cadmium chlorine (CsCdCl3 ) is developed, featuring remarkable LPL characteristics at room temperature, which is synthesized by a facile hydrothermal method. Excited by ultraviolet light, the CsCdCl3 crystals exhibit an intense yellow emission with a large photoluminescence quantum yield of ≈90%. Different from the reported systems with lanthanides or transition metals doping, the CsCdCl3 crystals without dopants perform yellow LPL with a long duration of 6000 s. Joint experiment-theory characterizations reveal the intrinsic point defects of CsCdCl3 act as the trap centers of excited electrons and the carrier de-trapping process from such trap sites to localized emission centers contributes to the LPL. Encouraged by the attractive fluorescence and persistent luminescence as well as good stability of CsCdCl3 against environment oxygen/moisture (75%), heat (100 °C for 10 h), and ultraviolet light irradiation, an effective dual-mode information storage-reading application is demonstrated. The results open up a new frontier for exploring LPL materials without dopants and provide an opportunity for advanced information storage compatible for practical applications.

8.
Adv Mater ; 34(43): e2204801, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36047911

RESUMEN

Flexible scintillator screens with environmental stability, high sensitivity, and low cost have emerged as candidates for X-ray imaging applications. Here, a large-scale and cost-efficient solution synthesis of the vacancy-ordered double perovskite Cs2 ZrCl6 , which is characterized by thermal activation delayed fluorescence (TADF) dominated by triplet emission under X-ray irradiation, is demonstrated. The large Stokes shift and efficient luminescence collection of TADF effectively ensure the light outcoupling efficiency. Further, flexible X-ray scintillator screens with an area of 400 cm2 are prepared using poly(dimethylsiloxane) (PDMS) as the carrier, exhibiting excellent scintillation properties with light yields as high as 49 400 photons MeV-1 , spatial resolutions up to 18 lp mm-1 and detection limits as low as 65 nGy s-1 . Finally, the high-quality imaging results of non-planar and dynamic objects by such screens are demonstrated. It is believed that the explored Cs2 ZrCl6 @PDMS flexible scintillator screens would offer a big step toward expanding the application range of scintillators in different environments.

9.
Adv Sci (Weinh) ; 9(27): e2202408, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35780486

RESUMEN

Perovskite light-emitting diodes (LEDs) are emerging light sources for next-generation lighting and display technologies; however, their development is greatly plagued by difficulty in achieving yellow electroluminescence, environmental instability, and lead toxicity. Copper halide CsCu2 I3 with intrinsic yellow emission emerges as a highly promising candidate for eco-friendly LEDs, but the electroluminescent performance is limited by defect-related nonradiative losses and inefficient charge transport/injection. To solve these issues, a hole-transporting poly(9-vinlycarbazole) (PVK)-incorporated engineering into CsCu2 I3 emitter is proposed. PVK with carbazole groups is permeated at the grain boundaries of CsCu2 I3 films by interacting with the uncoordinated Cu+ , reducing the CuCs and CuI antisite defects to increase the radiative recombination and enhancing the hole mobility to balance the charge transport/injection, resulting in substantially enhanced device performances. Eventually, the yellow LEDs exhibit an 8.5-fold enhancement of external quantum efficiency, and the half-lifetime reaches 14.6 h, representing the most stable yellow LEDs based on perovskite systems reported so far.

10.
Nano Lett ; 22(12): 5046-5054, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35579571

RESUMEN

The rapid development of solid-state lighting technology has attracted much attention for searching efficient and stable luminescent materials, especially the single-component white-light emitter. Here, we adopt a facile ion-doping technology to synthesize vacancy-ordered double perovskite Cs2ZrCl6:Sb. The introduction of Sb3+ ions with a 5s2 active lone pair into Cs2ZrCl6 host stimulates the singlet (blue) and triplet (orange) states emission of Sb3+ ions, and their relative emission intensity can be tuned through the energy transfer from singlet to triplet states. Benefiting from the dual-band emission as a pair of perfect complementary colors, the optimum Cs2ZrCl6:1.5%Sb exhibits a high-quality white emission with a color-rendering index of 96. By employing Cs2ZrCl6:1.5%Sb as the down-conversion phosphor, stable single-component white light-emitting diodes with a record half-lifetime of 2003 h were further fabricated. This study puts forward an effective ion-doping strategy to design single-component white-light emitter, making practical applications of them in lighting technologies a real possibility.

11.
J Phys Condens Matter ; 34(20)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35213852

RESUMEN

The growing demand for optical anti-counterfeiting technology requires the development of new environmentally-friendly smart materials with single-component, multimodal fluorescence. Herein, Cs2ZnBr4:0.3Mn2+&0.15Cu+, as an efficient multimodal luminescent material with excitation-wavelength-dependent emission is reported. Under 365 nm and 254 nm UV light excitation, Cs2ZnBr4:Mn2+&Cu+emits mutually independent green light at 525 nm and blue light at 470 nm, which origin from the emission of Mn2+and the Cu+enhanced self-trapped excitons of Cs2ZnBr4, respectively. Furthermore, the multiexcitonic emission is applied to anti-counterfeiting applications and information encryption and decryption engineering. This codoped strategy provides a colorful step to expand the new metal halide materials in fluorescent anti-counterfeiting and information encryption and decryption.

12.
J Colloid Interface Sci ; 608(Pt 1): 758-767, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34689108

RESUMEN

Optical anti-counterfeiting and encryption have become a hotspot in information security. However, the advanced optical anti-counterfeiting technology still suffers from low security by single-luminescent mode. Herein, we present a novel multi-mode anti-counterfeiting strategy based on K3LuSi2O7: Tb3+/Bi3+ (KLSO: Tb3+/Bi3+) phosphors for the first time. KLSO not only provides various lattice sites for Bi3+ ions occupying to achieve tunable luminescence but can also be non-equivalently substituted by Tb3+ ions to produce persistent or thermo-luminescence. Furthermore, in the pattern "8888" constructed by the mixture of polyacrylic acid (PAA) with KLSO: Tb3+/Bi3+ phosphors, we selectively trigger the three luminescent modes of Bi3+ and Tb3+ ions to realize the design of differential display in the fields of thermal response, time resolution, and luminescence color for optical anti-counterfeiting. The differentiated display can only be presented under specific multi-stimuli response, which further improves the security of information. Our work provides a new insight for designing advanced materials and can be expected to inspire future studies to explore optical anti-counterfeiting technology.


Asunto(s)
Seguridad Computacional , Luminiscencia
13.
ACS Appl Mater Interfaces ; 13(51): 61506-61517, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34910472

RESUMEN

The core-shell engineering of lanthanide-doped nanoparticles has captured considerable attention because it can safeguard the luminescence intensity of the core by reducing surface defects. However, the limited surface area of the traditional spherical core-shell structure hinders the further breakthrough of the brightness. Herein, a unique NaYF4:Yb3+/RE3+@NaYF4:Yb3+/RE3+@NaNdF4:Yb3+ (RE3+ = Ho3+ or Er3+) dumbbell-shaped multilayer nanoparticle featuring a high surface area is reported. Its upconversion luminescence intensity is higher than that of the conventional spherical core-shell structure. A thorough investigation is performed on the luminescence and thermometric mechanisms of Ho3+/Er3+ distributed in the core and the first shell. Remarkably, when Ho3+/Er3+ ions are distributed in the first shell, the relative sensitivity of the biological luminescence nanothermometer composed of downshifting near-infrared emissions is increased to 2.543% K-1 (328 K), which considerably exceeds most reported values. The increased value is attributed to the more thermal-sensitive phonon-assisted energy transfer. For potential biological applications, dumbbell-shaped nanoparticles (DSNPs) with hydrophilic modification show excellent thermometric performance and high tissue penetration depth. Overall, the insights provided by this work will broaden the scope of novel DSNPs in the fields of luminescence and nanothermometry.

14.
Inorg Chem ; 60(24): 19440-19447, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34874152

RESUMEN

On account of the strong oxidizing property of the europium(III) ion, its charge transfer band (CTB) can be easily formed in many inorganic compounds. In this work, the Eu3+ ions were singly doped into the K3LuSi2O7 compound with a hexagonal structure, and two kinds of Eu3+-O2- CTBs were detected by monitoring at specific wavelengths. The qualitative analysis of Eu3+ ion site occupation was illuminated by combining Eu3+-O2- CTBs with the corresponding cell volume. Furthermore, the two kinds of Eu3+ sites are eventually assigned to the K(2) and Lu sites, which means that Eu3+ ions selectively occupy the site with a low coordination number, according to the calculated CT energy by the dielectric theory of complex crystals and the magnitude of CT energy in the excitation spectra. Meanwhile, at high temperatures, the CTB does not show the traditional thermal quenching like f-f transitions but demonstrates thermal enhancement; thus, by using this opposite variation in excitation spectra, a noninvasive optical thermometer is presented, and this opposite variation tendency is thought to be the difference of thermal stability of disparate excited energy states. When new luminescent phosphors are designed with interesting spectral properties, this work will give us an alternative approach to determine the site occupation preference of Eu3+, especially when there are more than two different sites in the compound.

15.
Inorg Chem ; 60(19): 14944-14951, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34553912

RESUMEN

Near-infrared (NIR) transparency windows have evoked considerable interest in biomedical thermal imaging owing to the superior tissue penetration and the high signal-to-noise ratio, allowing in vivo real-time temperature reading with nanometric spatial resolution. Here, we develop a multimode nonintrusive luminescent thermometer based on the Y3Al5O12 (YAG):Cr3+/Ln3+ (Ln = Ho, Er, Yb) phosphor, which covers three NIR biological transparency windows, enabling cross-checking readings with high sensitivity and a high penetration depth. Utilizing the energy transfer between lanthanide ions and transition-metal ions, the Cr3+/Ln3+-activated upconversion emissions provide ideal signals for ratiometric luminescent thermometry of the NIR-I mode. The phonon-assisted downshifting emissions of Er3+/Ho3+ are used to construct the NIR-III/II mode, and the NIR-III mode is based on the thermal coupling between stark levels of 4I13/2 (Er3+). Three independent modes show distinct thermometric performance in different NIR transparency windows and temperature ranges, and the combination of the three modes is conducive to obtain more accurate temperature readings in a broad temperature range, which paves the way toward versatile luminescent thermometers.


Asunto(s)
Sustancias Luminiscentes/química , Mediciones Luminiscentes , Metales Pesados/química , Temperatura , Rayos Infrarrojos
16.
Dalton Trans ; 50(27): 9483-9490, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34137414

RESUMEN

Recently, various strategies have been explored during research into the use of lanthanide-doped luminescent materials to mitigate energy loss at elevated dopant concentrations. Herein we report Yb3+/Er3+ co-doped Ba6Gd2Ti4O17 (BGTO) phosphors with a laminated lattice structure, which can allow the high-concentration doping of Er3+ ions into the oxide. Detailed investigations into the luminescence properties and crystal structures of Yb3+/Er3+ co-doped BGTO reveal that an increase in the dopant concentration is associated with the dimensional limitation of energy transfer in the crystal lattice. This finding may provide a novel avenue for the construction of high-dopant-concentration UC luminescent materials.

17.
Nanoscale ; 12(40): 20776-20785, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33030482

RESUMEN

Luminescence intensity ratio (LIR) nanothermometers are ideally suited for noninvasive temperature detection of microelectronic devices and living cells, and the painstaking pursuit of new nanothermometers with higher absolute temperature sensitivity (Sa) or relative temperature sensitivity (Sr) has dominated recent research. However, whether higher Sa and Sr values can intrinsically improve the performance of LIR nanothermometers and what factors essentially determine their accuracy have rarely been considered; these considerations are instructive for their design and application while reducing time and costs. Here, we clarify that the accuracy of lanthanide-based LIR nanothermometers is essentially determined by Sr and the relative error of the luminescence intensity (σI/I) but not Sa based on lanthanide-doped NaYF4, YPO4, YVO4, CaF2, YF3, Y2O3, BaTiO3, LaAlO3 and Y3Al5O12 temperature sensors, meaning that our previous pursuit of higher Sa does not contribute to the accuracy of lanthanide-based LIR nanothermometers. Further research reveals that σI/I is primarily influenced by energy level splitting, which can deteriorate the temperature uncertainty. For actual temperature detection of biological tissues, in addition to the above intrinsic factors, we shed light on the effects of probe self-heating, excitation power density, emission intensity and penetration depth on temperature readouts via a polyethyleneimine-modified NaYF4:Er3+/Yb3+@NaYF4-PEI aqueous solution, implying that we will continue to optimize nanothermometers and calibrate readouts according to the local environment. This work unifies the metrics of lanthanide-based LIR nanothermometers, corrects the previous misunderstanding of Sa to mitigate invalid work, and provides careful guidance for their development.

18.
Nanomedicine ; 24: 102135, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31843660

RESUMEN

The upconversion nanoparticles (UCNPs) exhibit versatility applications aiming at biological domains for decades on account of superior optical characteristics. Nevertheless, the UCNPs are confronted with tremendous difficulties in biological field owing to large grain size, low fluorescence efficiency, and single function. Herein, the small-sized CaF2: Yb3+/Er3+ UCNPs coated with NaGdF4 shells (activator and inert, UCNPs-RBHA-Pt-PEG) not only burst out strong fluorescence, but also provide prominent diagnosability by taking advantage of magnetic resonance (MR) imaging as well as temperature sensing and inhibiting capability for CT26 tumor tissues based on synergetic therapy modality of photodynamic therapy (PDT) and chemotherapy. Ultimately, the tumor sizes decrease visibly after injected with UCNPs-RBHA-Pt-PEG and simultaneously irradiated with near infrared (NIR) light at low power density (0.35 W/cm2, 6 min). In summary, the small-sized and strong-fluorescent single nanoparticles with multi-functions may provide a valuable enlightenment for diagnosis and treatment of cancer in the future.


Asunto(s)
Nanopartículas/química , Animales , Fluoruro de Calcio/química , Línea Celular Tumoral , Ratones , Modelos Teóricos , Especies Reactivas de Oxígeno/metabolismo , Temperatura , Rayos Ultravioleta
19.
J Phys Chem Lett ; 10(19): 5786-5790, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31515995

RESUMEN

Predicting the thermometric performance of diverse materials will facilitate the selection and design of nanothermometers to suit complex environments and specific signal outputs while saving much time and expense. Herein we explore and unveil the thermal-coupled thermometric performance of Er3+/Yb3+ codoped in a set of host lattices via the chemical bond theory of complex crystals. The unknown B and ΔE values of the thermometry are accurately estimated by the chemical bond parameters, further deepening our cognition of the correlation between the luminescence properties of Er3+ ions and the microscopic crystal structure. This allows us to precisely forecast the thermal-coupled thermometric performance of Er3+ for varying host lattices in advance.

20.
Dalton Trans ; 48(28): 10537-10546, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31214676

RESUMEN

Rare earth ion-doped fluoride upconversion nanoparticles (UCNPs), emerging as a novel class of probes and drug carriers, exhibit superior promise for bio-applications in diagnostics and treatment on account of their strong luminescence, fine biocompatibility, and high drug loading. However, the fine control and manipulation of particle size and the distribution of rare earth ion-doped oxides has remained an insurmountable challenge to date. In this work, we construct and synthesize silica-coated Gd2(WO4)3:Yb3+/Ho3+ nanoparticles by one-pot co-precipitation, with uniform distribution (∼130 nm) and enhanced yellow fluorescence. Particularly, the nanoparticles not only possess outstanding temperature sensing performance at biological temperatures in water by utilizing the fluorescence intensity ratio (FIR) method, but also allow a further serviceable contrast effect in vitro and in vivo based on the prominent T1-weighted magnetic resonance (MR) signal of Gd3+. Compared with cisplatin and platinum(iv) (DSP), the Gd2(WO4)3@SiO2 nanoparticles functionalized with DSP (Gd2(WO4)3@SiO2-Pt-PEG) exert higher lethality against CT26 cells and significantly inhibit the growth of tumors at the same concentration of Pt. This effect occurs through the greater level of cell endocytosis. The lethality value of the latter is 10 times higher than the former after the same length of time according to inductively coupled plasma-mass spectrometry (ICP-MS) results. In short, the monodisperse and strongly fluorescent Gd2(WO4)3@SiO2-Pt-PEG nanoparticles are endowed with dual-mode imaging, temperature sensing and anticancer functions, which provide a significant guide for synthesis and bio-application of lanthanide ion-doped oxides.


Asunto(s)
Antineoplásicos/farmacología , Colorantes Fluorescentes/farmacología , Nanopartículas/química , Imagen Óptica , Dióxido de Silicio/química , Temperatura , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Gadolinio/química , Holmio/química , Ratones , Estructura Molecular , Relación Estructura-Actividad , Compuestos de Tungsteno/química , Iterbio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...