Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 3): 119067, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704002

RESUMEN

Environmentally persistent free radicals (EPFRs) can pose exposure risks by inducing the generation of reactive oxygen species. As a new class of pollutants, EPFRs have been frequently detected in atmospheric particulate matters. In this study, the seasonal variations and sources of EPFRs in a severe cold region in Northeastern China were comprehensively investigated, especially for the high pollution events. The geomean concentration of EPFRs in the total suspended particle was 6.58 × 1013 spins/m3 and the mean level in winter was one order of magnitude higher than summer and autumn. The correlation network analysis showed that EPFRs had significantly positive correlation with carbon component, K+ and PAHs, indicating that EPFRs were primarily emitted from combustion and pyrolysis process. The source appointment by the Positive Matrix Factorization (PMF) model indicated that the dominant sources in the heating season were coal combustion (48.4%), vehicle emission (23.1%) and biomass burning (19.4%), while the top three sources in the non-heating season were others (41.4%), coal combustion (23.7%) and vehicle emissions (21.2%). It was found that the high EPFRs in cold season can be ascribed to the extensive use of fossil fuel for heating demand; while the high EPFRs occurred in early spring were caused by the large-scale opening combustion of biomass. In summary, this study provided important basic information for better understanding the pollution characteristics of EPFRs, which suggested that the implementation of energy transformation and straw utilization was benefit for the control of EPFRs in severe cold region.


Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , Monitoreo del Ambiente , Estaciones del Año , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , China , Radicales Libres/análisis , Biomasa , Material Particulado/análisis , Ciudades , Contaminación del Aire/análisis
2.
J Hazard Mater ; 473: 134643, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776815

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have the capability for solar radiation absorption related to climate forcing. Herein, pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles in a cold megacity were comprehensively investigated. The mean concentrations of Σ18PAHs in all the 11 particle size ranges were 3.95 ± 4.77 × 104 pg/m3 and 2.17 ± 1.54 × 103 pg/m3 in heating period (HP) and non-heating period (NHP), respectively. Except for most PAHs with 2 and 3 benzene rings in NHP, most other PAHs showed a unimodal distribution pattern with the peak at 0.56-1.0 µm in both periods, which was caused by PAH emission sources. The PAH-related climate forcing was mainly caused by the solar radiation absorptions at ∼325 (∼330) nm and ∼365 nm. In general, the absorption intensities were higher in HP than NHP. The absorption intensity in the particle size range of 0.56-1.0 µm was the highest, and benzo[e]pyrene was the dominant contributor. In colder periods in HP, higher PAH concentrations caused more intensive PAH-related climate forcing. This study provided new insights for pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles, which will be useful for better understanding PAH-related climate forcing.

3.
Sci Total Environ ; 904: 166709, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659555

RESUMEN

Few simultaneous studies of organochlorine pesticides (OCPs) in the atmosphere have been conducted across Southeast and Northeast China, and no data on the gas/particle (G/P) partitioning behaviors of several current-use OCPs are available. In this study, a one-year synchronous monitoring program was conducted for OCPs in Chinese atmosphere spanning 30° latitude and 60 °C temperature. A total of 111 pairs of gas and particle samples were collected from Mohe and Harbin in Northeast China and from Shenzhen in Southeast China. The detection frequency for 66.7 % of the OCPs exceeded 80 %, indicating their prevalence in the atmosphere. The concentrations of individual OCPs spanned six orders of magnitude, indicating different pollution levels. Highest levels of hexachlorobenzene were observed at all sites. Banned OCPs were found predominantly in secondary distribution patterns, whereas current-use OCPs were dominated by primary distribution patterns. In Harbin and Mohe, the concentrations of OCPs were highest in summer, followed by autumn and winter. No obvious seasonal variation was observed in Shenzhen associated with different cultivation types. At all three sites, OCPs were predominantly found in the gas phase, and higher percentages of particle-phase OCPs were observed in Harbin and Mohe than in Shenzhen. In this study, G/P partitioning models were used to study the G/P partitioning mechanism of OCPs. The Li-Ma-Yang model provided the most accurate prediction of the G/P partitioning behavior of OCPs with high molecular weights and low vapor pressures, particularly at low temperatures. However, OCPs with lower molecular weights and higher vapor pressures were predominantly in the equilibrium state, for which the Junge-Pankow model was suitable. This systematic cross-scale study provides new insights into pollution, G/P partitioning, and the environmental behavior of OCPs in the atmosphere.

4.
Arch Environ Contam Toxicol ; 85(2): 129-139, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37578493

RESUMEN

Health risks from exposure to contaminants are generally estimated by evaluating concentrations of the contaminants in environmental matrixes. However, accurate health risk assessment is difficult because of uncertainties regarding exposures. This study aims to utilize data on the concentrations of organophosphate flame retardants (OPFRs) in surface soil across China coupled with Monte Carlo simulations to compensate for uncertainties in exposure to evaluate the health risks associated with contamination of soil with this class of flame retardants. Results revealed that concentrations of ∑OPFRs were 0.793-406 ng/g dry weight (dw) with an average of 23.2 ng/g dw. In terms of spatial distribution, higher OPFRs concentrations were found in economically developed regions. Although the values of health risk of OPFRs in soil across China were below the threshold, the high concentrations of OPFRs in soil in some regions should attract more attentions in future. Sensitivity analysis revealed that concentrations of OPFRs in soil, skin adherence factor, and exposure duration were the most sensitive parameters in health risk assessment. In summary, the study indicated that the national scale soil measurement could provide unique information on OPFRs exposure and health risk assessment, which was useful for the management of soil in China and for better understanding of the environmental fate of OPFRs in the global perspective.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Humanos , China , Retardadores de Llama/análisis , Método de Montecarlo , Organofosfatos/análisis , Medición de Riesgo , Suelo
5.
J Hazard Mater ; 443(Pt B): 130263, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36332281

RESUMEN

Environmental persistent free radicals (EPFRs) have attracted more attentions recently due to their potential adverse effects to human. EPFRs in full-size range particles were comprehensively investigated in this study. The average EPFRs concentration during heating season was 3.01 × 1014 spins/m3, which was much higher than that in non-heating season (4.30 × 1013 spins/m3). The highest concentration of EPFRs presented in 0.56-1.0 µm particles during heating season, while it shifted to 5.6-10 µm particles during non-heating season. Besides, the contributions of EPFRs on PM>10 to the total concentration of EPFRs cannot be neglected, especially in the non-heating season. The International Commission on Radiological Protection model and the specific factors of the Chinese population were applied to evaluate the inhalation exposure risk of EPFRs. The results indicated that the exposure levels of EPFRs to the upper respiratory tract were much higher. The daily exposure dose of EPFRs suggested the inhalation exposure risk of 3-4 years old was higher than other age groups. In summary, these finding provided new insights for the full range particle size distribution and the inhalation exposure risk of EPFRs, which improved our understanding on the environmental fate and the health risk of EPFRs in atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Exposición por Inhalación , Humanos , Preescolar , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Atmósfera , Radicales Libres
6.
Chemosphere ; 288(Pt 1): 132504, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34627810

RESUMEN

As the result of the phase-out on polybrominated diphenyl ethers, organophosphate flame retardants (OPFRs) were widely used as substitutes in the world. Previous studies found that OPFRs were frequently detected in environmental, biological, and human samples. Considering their adverse effects, the absorption, bioaccumulation, metabolism and internal exposure processes of OPFRs attracted more attentions recently, especially for aryl-OPFR and Cl-OPFRs. In the present study, the biotransformation, metabolic kinetics and related CYP450 isoforms of typical Cl-OPFR (tris(1,3-dichloro-2-propyl) phosphate: TDCPP) and aryl-OPFR (triphenyl phosphate: TPhP) were studied in vitro by mouse liver microsomes. Metabolomic analysis revealed that TDCPP may be easier to bio-accumulate in organisms than TPhP, which can be explained by their metabolic rates and half-life values (TDCPP: t1/2 = 1.8083 h; TPhP: t1/2 = 0.1531 h). CYP2E1, CYP2D6, CYP1A2 and CYP2C19 were suggested to be the specific enzymes for the biotransformation of TDCPP via associated inhibition assay. CYP2E1 was the primary CYP450 isoform of metabolism in vitro for TPhP. These findings may provide new insights for the potential mechanism of hepatotoxicity in mammals induced by OPFRs and the detoxification process of OPFRs in hepatocytes.


Asunto(s)
Retardadores de Llama , Fosfatos , Animales , Biotransformación , Cinética , Ratones , Microsomas Hepáticos , Organofosfatos , Compuestos Organofosforados , Isoformas de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...