Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Laryngoscope ; 134(3): 1063-1070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37594207

RESUMEN

OBJECTIVE: Nasal airway obstruction (NAO) is caused by various disorders including nasal valve collapse (NVC). A bipolar radiofrequency (RF) device (VivAer®, Aerin Medical, Sunnyvale, CA) has been used to treat NAO through RF heat generation to the upper lateral cartilage (ULC). The purpose of this study is to measure temperature elevations in nasal tissue, using infrared (IR) radiometry to map the spatial and temporal evolution of temperature. STUDY DESIGN: Experimental and computational. METHODS: Composite porcine nasal septum was harvested and sectioned (1 mm and 2 mm). The device was used to heat the cartilage in composite porcine septum. An IR camera (FLIR® ExaminIR, Teledyne, Wilsonville, OR) was used to image temperature on the back surface of the specimen. These data were incorporated into a heat transfer finite element model that also calculated tissue damage using Arrhenius rate process. RESULTS: IR temperature imaging showed peak back surface temperatures of 49.57°C and 42.21°C in 1 and 2 mm thick septums respectively. Temperature maps were generated demonstrating the temporal and spatial evolution of temperature. A finite element model generated temperature profiles with respect to time and depth. Rate process models using Arrhenius coefficients showed 30% chondrocyte death at 1 mm depth after 18 s of RF treatment. CONCLUSION: The use of this device creates a thermal profile that may result in thermal injury to cartilage. Computational modeling suggests chondrocyte death extending as deep as 1.4 mm below the treatment surface. Further studies should be performed to improve dosimetry and optimize the heating process to reduce potential injury. Laryngoscope, 134:1063-1070, 2024.


Asunto(s)
Obstrucción Nasal , Tabique Nasal , Animales , Porcinos , Temperatura , Tabique Nasal/cirugía , Temperatura Corporal , Cartílago , Condrocitos
2.
J Invest Dermatol ; 143(8): 1397-1405, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330718

RESUMEN

A consistent set of measurement techniques must be applied to reliably and reproducibly evaluate the efficacy of treatments for cutaneous neurofibromas (cNFs) in people with neurofibromatosis type 1 (NF1). cNFs are neurocutaneous tumors that are the most common tumor in people with NF1 and represent an area of unmet clinical need. This review presents the available data regarding approaches in use or development to identify, measure, and track cNFs, including calipers, digital imaging, and high-frequency ultrasound sonography. We also describe emerging technologies such as spatial frequency domain imaging and the application of imaging modalities such as optical coherence tomography that may enable the detection of early cNFs and prevention of tumor-associated morbidity.


Asunto(s)
Neurofibroma , Neurofibromatosis 1 , Neoplasias Cutáneas , Humanos , Neurofibromatosis 1/diagnóstico por imagen , Neurofibroma/diagnóstico por imagen , Neurofibroma/patología , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Ultrasonografía
3.
Sci Rep ; 12(1): 19916, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402801

RESUMEN

Photo-mediated Ultrasound Therapy (PUT), as a new anti-vascular technique, can promote cavitation activity to selectively destruct blood vessels with a significantly lower amount of energy when compared to energy level required by other laser and ultrasound treatment therapies individually. Here, we report the development of a high speed PUT system based on a 50-kHz pulsed laser to achieve faster treatment, decreasing the treatment time by a factor of 20. Furthermore, we integrated it with optical coherence tomography angiography (OCTA) for real time monitoring. The feasibility of the proposed OCTA-guided PUT was validated through in vivo rabbit experiments. The addition of OCTA to PUT allows for quantitative prescreening and real time monitoring of treatment response, thereby enabling implementation of individualized treatment strategies.


Asunto(s)
Tomografía de Coherencia Óptica , Terapia por Ultrasonido , Animales , Conejos , Tomografía de Coherencia Óptica/métodos , Angiografía con Fluoresceína/métodos , Terapia por Ultrasonido/métodos , Rayos Láser
4.
ACS Appl Bio Mater ; 5(2): 650-660, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35006664

RESUMEN

Particles fabricated from red blood cells (RBCs) can serve as vehicles for delivery of various biomedical cargos. Flipping of phosphatidylserine (PS) from the inner to the outer membrane leaflet normally occurs during the fabrication of such particles. PS externalization is a signal for phagocytic removal of the particles from circulation. Herein, we demonstrate that membrane cholesterol enrichment can mitigate the outward display of PS on microparticles engineered from RBCs. Our in-vitro results show that the phagocytic uptake of cholesterol-enriched particles by murine macrophages takes place at a lowered rate, resulting in reduced uptake as compared to RBC-derived particles without cholesterol enrichment. When administered via tail-vein injection into healthy mice, the percent of injected dose (ID) per gram of extracted blood for cholesterol-enriched particles was ∼1.5 and 1.8 times higher than the particles without cholesterol enrichment at 4 and 24 h, respectively. At 24 h, ∼43% ID/g of the particles without cholesterol enrichment was eliminated or metabolized while ∼94% ID/g of the cholesterol-enriched particles were still retained in the body. These results indicate that membrane cholesterol enrichment is an effective method to reduce PS externalization on the surface of RBC-derived particles and increase their longevity in circulation.


Asunto(s)
Micropartículas Derivadas de Células , Animales , Micropartículas Derivadas de Células/metabolismo , Colesterol , Eritrocitos , Ratones , Fagocitosis , Fosfatidilserinas
5.
Sci Rep ; 10(1): 20745, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247200

RESUMEN

Body contouring achieved via subcutaneous adipose tissue reduction has notably advanced over the past century, from suction assisted lipectomy to techniques with reduced degrees of invasiveness including laser, radiofrequency, high frequency focused ultrasound, cryolipolysis, and drug-based injection approaches. These costly techniques have focused on damaging adipocyte cell membranes, hydrolyzing triglycerides (TGs), or inducing apoptosis. Here, we present a simple, low-cost technique, termed electrochemical lipolysis (ECLL). During ECLL, saline is injected into the subcutaneous adipose tissue, followed by insertion of needle electrodes and application of an electrical potential. Electrolysis of saline creates localized pH gradients that drive adipocyte death and saponification of TGs. Using pH mapping, various optical imaging techniques, and biochemical assays, we demonstrate the ability of ECLL to induce acid and base injury, cell death, and the saponification of triglycerides in ex vivo porcine adipose tissue. We define ECLL's potential role as a minimally-invasive, ultra-low-cost technology for reducing and contouring adipose tissue, and present ECLL as a potential new application of an emerging electrochemical redox based treatment modality.


Asunto(s)
Tejido Adiposo/patología , Contorneado Corporal/métodos , Técnicas Electroquímicas/métodos , Lipólisis , Triglicéridos/metabolismo , Tejido Adiposo/metabolismo , Animales , Apoptosis , Concentración de Iones de Hidrógeno , Porcinos
6.
J Dermatol Sci ; 97(3): 179-186, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32169274

RESUMEN

BACKGROUND: Minimally-invasive methods to treat scars address a common pathway of altering collagen structure, leading to collagen remodeling. OBJECTIVE: In this study, we employed in situ redox chemistry to create focal pH gradients in skin, altering dermal collagen, in a process we refer to as electrochemical therapy (ECT). The effects of ECT to induce biochemical and structural changes in ex vivo porcine skin were examined. METHODS: During ECT, two platinum electrodes were inserted into fresh porcine skin, and following saline injection, an electrical potential was applied. pH mapping, high frequency ultrasonography, and two photon excitation microscopy and second harmonic generation (SHG) microscopy were used to evaluate treatment effects. Findings were correlated with histology. RESULTS: Following ECT, pH mapping depicted acid and base production at anode and cathode sites respectively, with increasing voltage and application time. Gas formation during ECT was observed with ultrasonography. Anode sites showed significant loss of SHG signal, while cathode sites showed disorganized collagen structure with fewer fibrils emitting an attainable signal. Histologically, collagen denaturation at both sites was confirmed. CONCLUSION: We demonstrated the production of in situ acid and base in skin occurring via ECT. The effects chemically and precisely alter collagen structure through denaturation, giving insight on the potential of ECT as a simple, low-cost, and minimally-invasive means to remodel skin and treat scars.


Asunto(s)
Cicatriz/terapia , Colágeno/química , Terapia por Estimulación Eléctrica/métodos , Piel/química , Animales , Fenómenos Biofísicos , Cicatriz/patología , Terapia por Estimulación Eléctrica/instrumentación , Electrodos , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Animales , Piel/diagnóstico por imagen , Piel/patología , Porcinos , Ultrasonografía
7.
ACS Appl Mater Interfaces ; 12(1): 275-287, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31820920

RESUMEN

Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 µm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.


Asunto(s)
Portadores de Fármacos , Eritrocitos/química , Nanoestructuras/química , Neoplasias , Imagen Óptica , Animales , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Masculino , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Piel/irrigación sanguínea , Piel/diagnóstico por imagen , Nanomedicina Teranóstica
8.
J Biomed Opt ; 23(12): 1-10, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30499264

RESUMEN

Pulsed dye laser irradiation in the wavelength range of 585 to 600 nm is currently the gold standard for treatment of port-wine stains (PWSs). However, this treatment method is often ineffective for deeply seated blood vessels and in individuals with moderate to heavy pigmentation. Use of optical particles doped with the FDA-approved near-infrared (NIR) absorber, indocyanine green (ICG), can potentially provide an effective method to overcome these limitations. Herein, we theoretically investigate the effectiveness of particles derived from erythrocytes, which contain ICG, in mediating photothermal destruction of PWS blood vessels. We refer to these particles as NIR erythrocyte-derived transducers (NETs). Our theoretical model consists of a Monte Carlo algorithm to estimate the volumetric energy deposition, a finite elements approach to solve the heat diffusion equation, and a damage integral based on an Arrhenius relationship to quantify tissue damage. The model geometries include simulated PWS blood vessels as well as actual human PWS blood vessels plexus obtained by the optical coherence tomography. Our simulation results indicate that blood vessels containing micron- or nano-sized NETs and irradiated at 755 nm have higher levels of photothermal damage as compared to blood vessels without NETs irradiated at 585 nm. Blood vessels containing micron-sized NETs also showed higher photothermal damage than blood vessels containing nano-sized NETs. The theoretical model presented can be used in guiding the fabrication of NETs with patient-specific optical properties to allow for personalized treatment based on the depth and size of blood vessels as well as the pigmentation of the individual's skin.


Asunto(s)
Eritrocitos/metabolismo , Verde de Indocianina/farmacología , Terapia por Láser/métodos , Mancha Vino de Oporto/diagnóstico por imagen , Mancha Vino de Oporto/terapia , Piel/efectos de la radiación , Algoritmos , Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/patología , Simulación por Computador , Calor , Humanos , Imagenología Tridimensional , Rayos Láser , Modelos Anatómicos , Modelos Teóricos , Método de Montecarlo , Óptica y Fotónica , Fotoquímica , Pigmentación , Espectroscopía Infrarroja Corta
9.
Nanotechnology ; 28(3): 035101, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27966473

RESUMEN

Light-activated theranostic materials offer a potential platform for optical imaging and phototherapeutic applications. We have engineered constructs derived from erythrocytes, which can be doped with the FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigated the effects of changing the NETs mean diameter from micron- (≈4 µm) to nano- (≈90 nm) scale, and the ICG concentration utilized in the fabrication of NETs from 5 to 20 µM on the resulting absorption and scattering characteristics of the NETs. Our approach consisted of integrating sphere-based measurements of light transmittance and reflectance, and subsequent utilization of these measurements in an inverse adding-doubling algorithm to estimate the absorption (µ a) and reduced scattering (µ s') coefficients of these NETs. For a given NETs diameter, values of µ a increased over the approximate spectral band of 630-860 nm with increasing ICG concentration. Micron-sized NETs produced the highest peak value of µ a when using ICG concentrations of 10 and 20 µM, and showed increased values of µ s' as compared to nano-sized NETs. Spectral profiles of µ s' for these NETs showed a trend consistent with Mie scattering behavior for spherical objects. For all NETs investigated, changing the ICG concentration minimally affected the scattering characteristics. A Monte Carlo-based model of light distribution showed that the presence of these NETs enhanced the fluence levels within simulated blood vessels. These results provide important data towards determining the appropriate light dosimetry parameters for an intended light-based biomedical application of NETs.


Asunto(s)
Materiales Biomiméticos/química , Eritrocitos/química , Sondas Moleculares/química , Imagen Óptica/métodos , Óptica y Fotónica/métodos , Animales , Bovinos , Verde de Indocianina/química , Luz , Método de Montecarlo , Imagen Óptica/instrumentación , Óptica y Fotónica/instrumentación , Dispersión de Radiación , Espectroscopía Infrarroja Corta/instrumentación , Espectroscopía Infrarroja Corta/métodos , Nanomedicina Teranóstica/métodos , Transductores
10.
Artículo en Inglés | MEDLINE | ID: mdl-27013846

RESUMEN

Here, we review our current knowledge on the etiology and treatment of port-wine stain (PWS) birthmarks. Current treatment options have significant limitations in terms of efficacy. With the combination of 1) a suitable preclinical microvascular model, 2) laser speckle imaging (LSI) to evaluate blood-flow dynamics, and 3) a longitudinal experimental design, rapid preclinical assessment of new phototherapies can be translated from the lab to the clinic. The combination of photodynamic therapy (PDT) and pulsed-dye laser (PDL) irradiation achieves a synergistic effect that reduces the required radiant exposures of the individual phototherapies to achieve persistent vascular shutdown. PDL combined with anti-angiogenic agents is a promising strategy to achieve persistent vascular shutdown by preventing reformation and reperfusion of photocoagulated blood vessels. Integration of LSI into the clinical workflow may lead to surgical image guidance that maximizes acute photocoagulation, is expected to improve PWS therapeutic outcome. Continued integration of noninvasive optical imaging technologies and biochemical analysis collectively are expected to lead to more robust treatment strategies.

11.
Opt Express ; 23(24): 31026-33, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698732

RESUMEN

We have developed laser-diode-based optical-resolution photoacoustic microscopy (LD-OR-PAM) of superficial microvasculature which has the desirable properties of being compact, low-cost, and label-free. A 300-mW visible pulsed laser diode was operated at a 405 ± 5 nm wavelength with a pulse energy as low as 52 nJ. By using a 3.6 MHz ultrasound transducer, the system was tested on carbon fibers with a lateral resolution of 0.95 µm and an SNR of 38 dB. The subcutaneous microvasculature on a mouse back was imaged without an exogenous contrast agent which demonstrates the potential of the proposed prototype for skin chromophores. Our eventual goal is to offer a practical and affordable multi-wavelength functional LD-OR-PAM instrument suitable for clinical applications.


Asunto(s)
Aumento de la Imagen/instrumentación , Láseres de Colorantes , Iluminación/instrumentación , Microscopía/instrumentación , Microvasos/citología , Técnicas Fotoacústicas/instrumentación , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Ratones , Miniaturización , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Lasers Surg Med ; 46(9): 679-88, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25270513

RESUMEN

BACKGROUND: Administration of topical rapamycin (RPM) suppresses the regeneration and revascularization of photocoagulated blood vessels induced by pulsed dye laser (PDL). OBJECTIVE: To systematically elucidate the molecular pathophysiology of the inhibition of PDL-induced angiogenesis by topical RPM in a rodent model. METHODS: The mRNA expression profiles of 86 angiogenic genes and phosphorylation levels of ribosomal protein S6 kinase (P70S6K) in rodent skin were examined with or without topical RPM administration post-PDL exposure. RESULTS: The PDL-induced systematic increases in transcriptional levels of angiogenic genes showed a peak expression at days 3-7 post-PDL in rodent skin. Topical application of 1% RPM significantly and systematically suppressed the PDL-induced increase in mRNA levels of the examined angiogenic genes during the first five days post-PDL. The phosphorylation levels of P70S6K increased after PDL exposure but those increases were suppressed by the topical RPM. After topical application, RPM penetrated to an approximate depth of 768.4 µm into rodent skin. CONCLUSION: Topical application of 1% RPM can significantly and systematically suppress the PDL-induced early stage of angiogenesis via inhibition of the AKT/mTOR/P70S6K pathway in a rodent model.


Asunto(s)
Inmunosupresores/administración & dosificación , Láseres de Colorantes , Neovascularización Fisiológica/efectos de los fármacos , Sirolimus/administración & dosificación , Piel/irrigación sanguínea , Piel/efectos de los fármacos , Administración Cutánea , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Neovascularización Fisiológica/fisiología , Neovascularización Fisiológica/efectos de la radiación , Ratas , Ratas Sprague-Dawley , Piel/efectos de la radiación
13.
J Am Acad Dermatol ; 71(5): 964-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25135651

RESUMEN

BACKGROUND: Port-wine stain (PWS) is a congenital, progressive vascular malformation but the pathogenesis remains incompletely understood. OBJECTIVE: We sought to investigate the activation status of various kinases, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, AKT, phosphatidylinositol 3-kinase, P70 ribosomal S6 kinase, and phosphoinositide phospholipase C γ subunit, in PWS biopsy tissues. METHODS: Immunohistochemistry was performed on 19 skin biopsy samples from 11 patients with PWS. RESULTS: c-Jun N-terminal kinase, extracellular signal-regulated kinase, and P70 ribosomal S6 kinase in pediatric and adult PWS blood vessels were consecutively activated. Activation of AKT and phosphatidylinositol 3-kinase was found in many adult hypertrophic PWS blood vessels but not in infants. Phosphoinositide phospholipase C γ subunit showed strong activation in nodular PWS blood vessels. LIMITATION: Infantile PWS sample size was small. CONCLUSION: Our data suggest a subsequent activation profile of various kinases during different stages of PWS: (1) c-Jun N-terminal and extracellular signal-regulated kinases are firstly and consecutively activated in all PWS tissues, which may contribute to both the pathogenesis and progressive development of PWS; (2) AKT and phosphatidylinositol 3-kinase are subsequently activated, and are involved in the hypertrophic development of PWS blood vessels; and (3) phosphoinositide phospholipase C γ subunit is activated in the most advanced stage of PWS and may participate in nodular formation.


Asunto(s)
Vasos Sanguíneos/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mancha Vino de Oporto/enzimología , Adolescente , Adulto , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C gamma/metabolismo , Mancha Vino de Oporto/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
14.
Lasers Surg Med ; 46(10): 791-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25557008

RESUMEN

BACKGROUND/OBJECTIVES: Similar to conventional cryogen spray cooling, carbon dioxide (CO2) spray may be used in combination with laser cartilage reshaping (LCR) to produce cartilage shape change while minimizing cutaneous thermal injury. Recent ex vivo evaluation of LCR with CO2 cooling in a rabbit model has identified a promising initial parameter space for in vivo safety and efficacy evaluation. This pilot study aimed to evaluate shape change and cutaneous injury following LCR with CO2 cooling in 5 live rabbits. STUDY DESIGN/MATERIALS AND METHODS: The midportion of live rabbit ears were irradiated with a 1.45 µm wavelength diode laser (12 J/cm(2)) with simultaneous CO2 spray cooling (85 millisecond duration, 4 alternating heating/cooling cycles per site, 5 to 6 irradiation sites per row for 3 rows per ear). Experimental and control ears (no LCR) were splinted in the flexed position for 30 days following exposure. A total of 5 ears each were allocated to the experimental and control groups. RESULTS: Shape change was observed in all irradiated ears (mean 70 ± 3°), which was statistically different from control (mean 37 ± 11°, P = 0.009). No significant thermal cutaneous injury was observed, with preservation of the full thickness of skin, microvasculature, and adnexal structures. Confocal microscopy and histology demonstrated an intact and viable chondrocyte population surrounding irradiated sites. CONCLUSIONS: LCR with CO2 spray cooling can produce clinically significant shape change in the rabbit auricle while minimizing thermal cutaneous and cartilaginous injury and frostbite. This pilot study lends support for the potential use of CO2 spray as an adjunct to existing thermal-based cartilage reshaping modalities. An in vivo systematic evaluation of optimal laser dosimetry and cooling parameters is required.


Asunto(s)
Quemaduras/prevención & control , Dióxido de Carbono/uso terapéutico , Crioterapia/métodos , Cartílago Auricular/cirugía , Terapia por Láser/efectos adversos , Láseres de Semiconductores/uso terapéutico , Animales , Quemaduras/etiología , Quemaduras/patología , Modelos Animales , Proyectos Piloto , Conejos , Piel/patología , Piel/efectos de la radiación
15.
Lasers Surg Med ; 45(10): 628-32, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24155140

RESUMEN

BACKGROUND AND OBJECTIVES: Port-wine stain (PWS) is a congenital, progressive vascular malformation of the dermis. The use of optical coherence tomography (OCT) for the characterization of blood vessels in PWS skin has been demonstrated by several groups. In the past few years, advances in OCT technology have greatly increased imaging speed. Sophisticated numerical algorithms have improved the sensitivity of Doppler OCT dramatically. These improvements have enabled the noninvasive, high-resolution, three-dimensional functional imaging of PWS skin. Here, we demonstrate high-resolution, three-dimensional, microvasculature imaging of PWS and normal skin using Doppler OCT technique. STUDY DESIGN/MATERIALS AND METHODS: The OCT system uses a swept source laser which has a central wavelength of 1,310 nm, an A-line rate of 50 kHz and a total average power of 16 mW. The system uses a handheld imaging probe and has an axial resolution of 9.3 µm in air and a lateral resolution of approximately 15 µm. Images were acquired from PWS subjects at the Beckman Laser Institute and Medical Clinic. Microvasculature of the PWS skin and normal skin were obtained from the PWS subject. RESULTS: High-resolution, three-dimensional microvasculature of PWS and normal skin were obtained. Many enlarged PWS vessels are detected in the dermis down to 1.0 mm below the PWS skin surface. In one subject, the blood vessel diameters range from 40 to 90 µm at the epidermal-dermal junction and increase up to 300-500 µm at deeper regions 700-1,000 µm below skin surface. The blood vessels close to the epidermal-dermal junction are more uniform, in terms of diameter. The more tortuous and dilated PWS blood vessels are located at deeper regions 600-1,000 µm below the skin surface. In another subject example, the PWS skin blood vessels are dilated at very superficial layers at a depth less than 500 µm below the skin surface. The PWS skin vessel diameters range from 60 to 650 µm, with most vessels having a diameter of around 200 µm. CONCLUSIONS: OCT can be used to quantitatively image in vivo skin micro-vasculature. Analysis of the PWS and normal skin blood vessels were performed and the results can provide quantitative information to optimize laser treatment on an individual patient basis.


Asunto(s)
Imagenología Tridimensional , Microvasos/patología , Mancha Vino de Oporto/patología , Tomografía de Coherencia Óptica/métodos , Adulto , Algoritmos , Estudios de Casos y Controles , Femenino , Humanos , Masculino
16.
Lasers Med Sci ; 28(6): 1475-82, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23307439

RESUMEN

Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-µm wavelength diode laser (fluence 12-14 J/cm(2) per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33-85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50-70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress.


Asunto(s)
Cartílago Auricular/cirugía , Láseres de Semiconductores/uso terapéutico , Animales , Dióxido de Carbono , Crioterapia/métodos , Cartílago Auricular/lesiones , Láseres de Semiconductores/efectos adversos , Modelos Animales , Conejos , Piel/lesiones , Temperatura Cutánea
17.
Lasers Surg Med ; 44(10): 796-804, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23213008

RESUMEN

BACKGROUND AND OBJECTIVES: Pulsed dye laser (PDL) is the most effective treatment for port wine stain (PWS) birthmarks. However, regeneration and revascularization of photocoagulated blood vessels may result in poor therapeutic outcome. We have recently shown that rapamycin (RPM), an angiogenesis inhibitor, can reduce the regeneration and revascularization of photocoagulated blood vessels. Herein, we attempt to further elucidate the molecular pathophysiology on the inhibition of the regeneration and revascularization of photocoagulated blood vessels by topical RPM in an animal model. MATERIALS AND METHODS: Two separate skin areas on each hamster were irradiated by PDL. After PDL exposure, topical RPM was applied daily to one of the randomly selected test sites. PDL, PDL + RPM and normal skin test sites were biopsied on day 3 after PDL exposure. The total ribonucleic acid (RNA) and protein were extracted from biopsied skin samples and quantified. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunoblot were subsequently performed to quantify the mRNA and protein levels of hypoxia-inducible factor-1alpha (HIF-1α), vascular endothelial growth factor (VEGF) and ribosomal protein S6 kinase (S6). The phosphorylation levels of S6 and AKT were also evaluated by immunoblot. RESULTS: The mRNA and protein levels of HIF-1α, VEGF, and S6 significantly increased after PDL exposure as compared to the normal hamster skin. Topical application of 1% RPM suppressed the PDL-induced increase in mRNA and protein levels of those genes on day 3 post-PDL exposure. The phosphorylation levels of S6 and AKT increased after PDL exposure but the increases were suppressed by the topical application of RPM. CONCLUSION: The increase in expression of HIF-1α, VEGF, and S6 after PDL-exposure suggests that angiogenesis pathways play very active roles in the process of skin blood vessel regeneration and revascularization. Topical application of 1% RPM can suppress the angiogenesis pathways and, therefore, reduce the regeneration and revascularization of photocoagulated blood vessels.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Coagulación con Láser , Láseres de Colorantes , Neovascularización Fisiológica , Sirolimus/farmacología , Piel/irrigación sanguínea , Administración Cutánea , Animales , Antibióticos Antineoplásicos/administración & dosificación , Biomarcadores/metabolismo , Cricetinae , Procedimientos Quirúrgicos Dermatologicos , Esquema de Medicación , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Immunoblotting , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Neovascularización Fisiológica/efectos de la radiación , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sirolimus/administración & dosificación , Piel/efectos de los fármacos , Piel/metabolismo , Piel/efectos de la radiación , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Opt Express ; 20(7): 7694-705, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22453448

RESUMEN

In this paper, the features of the intensity-based Doppler variance (IBDV) method were analyzed systemically with a flow phantom. The effects of beam scanning density, flow rate and the time interval between neighboring A-lines on the performance of this method were investigated. The IBDV method can be used to quantify the flow rate and its sensitivity can be improved by increasing the time interval between the neighboring A-lines. A higher sensitivity IBDV method that applies the algorithm along the slower scan direction was proposed. In comparison to laser speckle imaging maps of blood flow, we demonstrated the ability of the method to identify vessels with altered blood flow. In clinical measurements, we demonstrated the ability of the method to image vascular networks with exquisite spatial resolution and at depths up to 1.2 mm in human skin. These results collectively demonstrated the potential of the method to monitor the microvasculature during disease progression and in response to therapeutic intervention.


Asunto(s)
Dermoscopía/instrumentación , Aumento de la Imagen/instrumentación , Microvasos/citología , Piel/irrigación sanguínea , Tomografía de Coherencia Óptica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Fantasmas de Imagen
19.
Lasers Surg Med ; 44(2): 144-51, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22275290

RESUMEN

BACKGROUND/OBJECTIVES: Current laser therapy of port wine stain (PWS) birthmarks with a single laser pulse (SLP) does not produce complete lesion removal in the majority of patients. To improve PWS therapeutic efficacy, we evaluated the performance of an approach based on multiple laser pulses (MLP) to enhance blood vessel photocoagulation. STUDY DESIGN: The hamster dorsal window chamber model was used. Radiant exposure (RE), pulse repetition rate (f(r)), total number of pulses (n(p)), and length of vessel irradiated were varied. Blood vessels in the window were irradiated with either SLP with RE of 4-7 J/cm(2) or MLP with RE per pulse of 1.4-5.0 J/cm(2), f(r) of 0.5-26.0 Hz, and n(p) of 2-5. The laser wavelength was 532 nm and pulse duration was 1 ms. Either a 2 mm vessel segment or entire vessel branch was irradiated. Digital photographs and laser speckle images of the window were recorded before and at specific time points after laser irradiation to monitor laser-induced blood vessel structural and functional changes, respectively. RESULTS: We found that: (1) for a SLP approach, the RE required to induce blood vessel photocoagulation was 7 J/cm(2) as compared to only 2 J/cm(2) per pulse for the MLP approach; (2) for MLP, two pulses at a repetition rate of 5 Hz and a RE of 3 J/cm(2) can induce photocoagulation of more than 80% of irradiated blood vessel; and (3) irradiation of a longer segment of blood vessel resulted in lower reperfusion rate. CONCLUSIONS: The MLP approach can induce blood vessel photocoagulation at much lower RE per pulse as compared to SLP. The 5 Hz f(r) and the need for two pulses are achievable with modern laser technology, which makes the MLP approach practical in the clinical management of PWS birthmarks.


Asunto(s)
Coagulación con Láser/métodos , Láseres de Estado Sólido/uso terapéutico , Mancha Vino de Oporto/cirugía , Animales , Coagulación Sanguínea/efectos de la radiación , Cricetinae , Masculino , Microvasos/efectos de la radiación , Piel/irrigación sanguínea , Piel/efectos de la radiación , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...