Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neurochir (Wien) ; 166(1): 200, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689141

RESUMEN

BACKGROUND: The Cisternostomy is a novel surgical concept in the treatment of Traumatic Brain Injury (TBI), which can effectively drain the bloody cerebrospinal fluid from the skull base cistern, reduce the intracranial pressure, and improve the return of bone flap, but its preventive role in post-traumatic hydrocephalus (PTH) is unknow. The purpose of this paper is to investigate whether Cisternostomy prevents the occurrence of PTH in patients with moderate and severe TBI. METHODS: A retrospective analysis of clinical data of 86 patients with moderate and severe TBI from May 2019 to October 2021 was carried out in the Brain Trauma Center of Tianjin Huanhu Hospital. Univariate analysis was performed to examine the gender, age, preoperative Glasgow Coma Scale (GCS) score, preoperative Rotterdam CT score, decompressive craniectomy rate, intracranial infection rate, the incidence of subdural fluid, and incidence of hydrocephalus in patients between the Cisternostomy group and the non-Cisternostomy surgery group. we also analyzed the clinical outcome indicators like GCS at discharge,6 month GOS-E and GOS-E ≥ 5 in two groups.Additionaly, the preoperative GCS score, decompressive craniectomy rate, age, and gender of patients with PTH and non hydrocephalus were compared. Further multifactorial logistic binary regression was performed to explore the risk factors for PTH. Finally, we conducted ROC curve analysis on the statistically significant results from the univariate regression analysis to predict the ability of each risk factor to cause PTH. RESULTS: The Cisternostomy group had a lower bone flap removal rate(48.39% and 72.73%, p = 0.024)., higer GCS at discharge(11.13 ± 2.42 and 8.93 ± 3.31,p = 0.000) and better 6 month GOS-E(4.55 ± 1.26 and 3.95 ± 1.18, p = 0.029)than the non-Cisternostomy group However, there was no statistical difference in the incidence of hydrocephalus between the two groups (25.81% and 30.91%, p = 0.617). Moreover, between the hydrocephalus group and no hydrocephalus group,there were no significant differences in the incidence of gender, age, intracranial infection, and subdural fluid. While there were statistical differences in peroperative GCS score, Rotterdam CT score, decompressive craniectomy rate, intracranial infection rate, and the incidence of subdural fluid in the two groups, there was no statistical difference in the percentage of cerebral cisterns open drainage between the hydrocephalus group and no hydrocephalus group (32.00% and 37.70%, p = 0.617). Multifactorial logistic binary regression analysis results revealed that the independent risk factors for PTH were intracranial infection (OR = 18.460, 95% CI: 1.864-182.847 p = 0.013) and subdural effusion (OR = 10.557, 95% CI: 2.425-35.275 p = 0.001). Further, The ROC curve analysis showed that peroperative GCS score, Rotterdam CT score and subdural effusion had good ACU(0.785,0.730,and 0.749), with high sensitivity and specificity to predict the occurrence of PTH. CONCLUSIONS: Cisternostomy may decrease morbidities associated with removal of the bone flap and improve the clinical outcome, despite it cannot reduce the disability rate in TBI patients.Intracranial infection and subdural fluid were found to be the independent risk factors for PTH in patients with TBI,and the peroperative GCS score, Rotterdam CT score and subdural effusion had higher sensitivity and specificity to predict the occurrence of PTH. And more importantly, no correlation was observed between open drainage of the cerebral cisterns and the occurrence of PTH, indicating that Cisternostomy may not be beneficial in preventing the occurrence of PTH in patients with moderate and severe TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hidrocefalia , Humanos , Masculino , Femenino , Lesiones Traumáticas del Encéfalo/cirugía , Lesiones Traumáticas del Encéfalo/complicaciones , Persona de Mediana Edad , Adulto , Hidrocefalia/cirugía , Hidrocefalia/etiología , Hidrocefalia/prevención & control , Estudios Retrospectivos , Craniectomía Descompresiva/métodos , Anciano , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Adulto Joven , Escala de Coma de Glasgow
2.
Nat Protoc ; 18(5): 1510-1542, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36859615

RESUMEN

The neurovascular unit (NVU), composed of endothelial cells, pericytes, juxtaposed astrocytes and microglia together with neurons, is essential for proper central nervous system functioning. The NVU critically regulates blood-brain barrier (BBB) function, which is impaired in several neurological diseases and is therefore a key therapeutic target. To understand the extent and cellular source of BBB dysfunction, simultaneous isolation and analysis of NVU cells is needed. Here, we describe a protocol for the EPAM-ia method, which is based on flow cytometry for simultaneous isolation and analysis of endothelial cells, pericytes, astrocytes and microglia. This method is based on differential processing of NVU cell types using enzymes, mechanical homogenization and filtration specific for each cell type followed by combining them for immunostaining and fluorescence-activated cell sorting. The gating strategy encompasses cell-type-specific and exclusion markers for contaminating cells to isolate the major NVU cell types. This protocol takes ~6 h for two sets of one or two animals. The isolation part requires experience in animal handling, fresh tissue processing and immunolabeling for flow cytometry. Sorted NVU cells can be used for downstream applications including transcriptomics, proteomics and cell culture. Multiple cell-type analyses using UpSet can then be applied to obtain robust targets from single or multiple NVU cell types in neurological diseases associated with BBB dysfunction. The EPAM-ia method is also amenable to isolation of several other cell types, including cancer cells and immune cells. This protocol is applicable to healthy and pathological tissue from mouse and human sources and to several cell types compared with similar protocols.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Humanos , Ratones , Animales , Citometría de Flujo , Células Endoteliales/fisiología , Barrera Hematoencefálica/metabolismo , Astrocitos , Neuronas
3.
Acta Neuropathol ; 144(2): 305-337, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752654

RESUMEN

Blood-brain barrier (BBB) dysfunction, characterized by degradation of BBB junctional proteins and increased permeability, is a crucial pathophysiological feature of acute ischemic stroke. Dysregulation of multiple neurovascular unit (NVU) cell types is involved in BBB breakdown in ischemic stroke that may be further aggravated by reperfusion therapy. Therefore, therapeutic co-targeting of dysregulated NVU cell types in acute ischemic stroke constitutes a promising strategy to preserve BBB function and improve clinical outcome. However, methods for simultaneous isolation of multiple NVU cell types from the same diseased central nervous system (CNS) tissue, crucial for the identification of therapeutic targets in dysregulated NVU cells, are lacking. Here, we present the EPAM-ia method, that facilitates simultaneous isolation and analysis of the major NVU cell types (endothelial cells, pericytes, astrocytes and microglia) for the identification of therapeutic targets in dysregulated NVU cells to improve the BBB function. Applying this method, we obtained a high yield of pure NVU cells from murine ischemic brain tissue, and generated a valuable NVU transcriptome database ( https://bioinformatics.mpi-bn.mpg.de/SGD_Stroke ). Dissection of the NVU transcriptome revealed Spp1, encoding for osteopontin, to be highly upregulated in all NVU cells 24 h after ischemic stroke. Upregulation of osteopontin was confirmed in stroke patients by immunostaining, which was comparable with that in mice. Therapeutic targeting by subcutaneous injection of an anti-osteopontin antibody post-ischemic stroke in mice resulted in neutralization of osteopontin expression in the NVU cell types investigated. Apart from attenuated glial activation, osteopontin neutralization was associated with BBB preservation along with decreased brain edema and reduced risk for hemorrhagic transformation, resulting in improved neurological outcome and survival. This was supported by BBB-impairing effects of osteopontin in vitro. The clinical significance of these findings is that anti-osteopontin antibody therapy might augment current approved reperfusion therapies in acute ischemic stroke by minimizing deleterious effects of ischemia-induced BBB disruption.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Células Endoteliales , Ratones , Accidente Cerebrovascular/tratamiento farmacológico
4.
Oncol Rep ; 44(2): 533-542, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468039

RESUMEN

Glioblastoma is a highly malignant tumor that contains stem­like cells known as glioma stem cells (GSCs), which lare associated with an increased risk of glioma occurrence, recurrence and poor prognosis. Circadian clock gene, period circadian clock 2 (PER2) expression has been revealed to be inhibited in various types of cancer. However, the precise role and potential mechanisms of PER2 in GSCs remains unclear. The present study demonstrated that PER2 mRNA and protein expression was downregulated in GSCs compared with non­stem glioma cells, which indicated that PER2 could be involved in the malignant process of glioma. Furthermore, functional studies revealed that PER2 overexpression could induce GSC arrest at the G0/G1 phase and suppress their proliferation, stemness and invasion ability in vitro and in vivo. Subsequently, the Wnt/ß­catenin signaling pathway was identified as the target of PER2 in GSCs. These results indicated that PER2 plays a critical role in regulating the stemness of GSCs and provides a novel therapeutic target to overcome the effects of GSCs.


Asunto(s)
Neoplasias Encefálicas/patología , Regulación hacia Abajo , Glioma/patología , Células Madre Neoplásicas/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Vía de Señalización Wnt
5.
RSC Adv ; 10(19): 11219-11224, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35495312

RESUMEN

Thin films with perpendicular magnetic anisotropy (PMA) play an essential role in the development of technologies due to their excellent thermal stability and potential application in devices with high density, high stability, and low energy consumption. Many studies have focused on the relationship between the resistivity of heavy metals and the PMA of the neighbouring magnetic metals in magnetic multi-layered films. However, reports on the effects of heavy metals non-adjacent to the magnetic metals on the PMA are rare. Herein, we demonstrate the influence of the heavy metal Ta underlayer non-adjacent to the magnetic Co layer on the PMA and thermal stability in the Ta/Pt/Co/Pt heterostructures. A type of amorphous Ta film having an ultra-high resistivity (ρ max = 3.9 × 105 µΩ cm) was optimized by DC sputtering at a high sputtering Ar pressure, low sputtering power, and large target-to-substrate distance. The value of resistivity is three orders of magnitude higher than that of the ß-Ta underlayer. We found that this special Ta underlayer can effectively improve the PMA and thermal stability of the magnetic Co layer based on the anomalous Hall and planar Hall effect measurements. The maximum magnetic anisotropic field reaches 1.1 T at a low temperature. It is very likely that the ultra-high resistivity leads to the increase in the additional electron scattering in the Ta/Pt interface, while the latter results in the enhancement of the PMA and thermal stability in the structure. These results reveal the inherent relationship between the resistivity of the heavy metal underlayer and PMA, and provide a novel approach to improve the PMA and thermal stability of heavy metal/magnetic metal multi-layered films.

6.
PeerJ ; 7: e6453, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30783577

RESUMEN

BACKGROUND: An assessment of the degree of white matter tract injury is important in neurosurgical planning for patients with gliomas. The main objective of this study was to assess the injury grade of the corticospinal tract (CST) in rats with glioma using diffusion tensor imaging (DTI). METHODS: A total 17 rats underwent 7.0T MRI on day 10 after tumor implantation. The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were acquired in the tumor, peritumoral and contralateral areas, and the ADC ratio (ipsilateral ADC/contralateral ADC) and rFA (relative FA = ipsilateral FA/contralateral FA) in the peritumoral areas were measured. The CST injury was divided into three grades and delineated by diffusion tensor tractography reconstruction imaging. The fiber density index (FDi) of the ipsilateral and contralateral CST and rFDi (relative FDi = ipsilateral FDi/contralateral FDi) in the peritumoral areas were measured. After the mice were sacrificed, the invasion of glioma cells and fraction of proliferating cells were observed by hematoxylin-eosin and Ki67 staining in the tumor and peritumoral areas. The correlations among the pathology results, CST injury grade and DTI parameter values were calculated using a Spearman correlation analysis. One-way analysis of variance was performed to compare the different CST injury grade by the rFA, rFDi and ADC ratio values. RESULTS: The tumor cells and proliferation index were positively correlated with the CST injury grade (r = 0.8857, 0.9233, P < 0.001). A negative correlation was demonstrated between the tumor cells and the rFA and rFDi values in the peritumoral areas (r = -0.8571, -0.5588), and the proliferation index was negatively correlated with the rFA and rFDi values (r = -0.8571, -0.5588), while the ADC ratio was not correlated with the tumor cells or proliferation index. The rFA values between the CST injury grades (1 and 3, 2 and 3) and the rFDi values in grades 1 and 3 significantly differed (P < 0.05). CONCLUSIONS: Diffusion tensor imaging may be used to quantify the injury degrees of CST involving brain glioma in rats. Our data suggest that these quantitative parameters may be used to enhance the efficiency of delineating the relationship between fiber tracts and malignant tumor.

7.
Radiat Oncol ; 10: 64, 2015 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-25884395

RESUMEN

BACKGROUND: The main objective of this study was to evaluate the efficacy of integrating the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion tensor imaging (DTI) data into radiation treatment planning for high-grade gliomas located near the primary motor cortexes (PMCs) and corticospinal tracts (CSTs). METHODS: A total of 20 patients with high-grade gliomas adjacent to PMCs and CSTs between 2012 and 2014 were recruited. The bilateral PMCs and CSTs were located in the normal regions without any overlapping with target volume of the lesions. BOLD-fMRI, DTI and conventional MRI were performed on patients (Karnofsky performance score ≥ 70) before radical radiotherapy treatment. Four different imaging studies were conducted in each patient: a planning computed tomography (CT), an anatomical MRI, a DTI and a BOLD-fMRI. For each case, three treatment plans (3DCRT, IMRT and IMRT_PMC&CST) were developed by 3 different physicists using the Pinnacle planning system. RESULTS: Our study has shown that there was no significant difference between the 3DCRT and IMRT plans in terms of dose homogeneity, but IMRT displayed better planning target volume (PTV) dose conformity. In addition, we have found that the Dmax and Dmean to the ipsilateral and contralateral PMC and CST regions were considerably decreased in IMRT_PMC&CST group (p < 0.001). CONCLUSIONS: In conclusion, integration of BOLD-fMRI and DTI into radiation treatment planning is feasible and beneficial. With the assistance of the above-described techniques, the bilateral PMCs and CSTs adjacent to the target volume could be clearly marked as OARs and spared during treatment.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Imagen de Difusión Tensora/métodos , Glioma/radioterapia , Imagen por Resonancia Magnética/métodos , Corteza Motora/efectos de la radiación , Tractos Piramidales/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Adulto , Anciano , Neoplasias Encefálicas/patología , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/patología , Clasificación del Tumor , Pronóstico , Tractos Piramidales/patología , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Adulto Joven
8.
Can J Neurol Sci ; 40(4): 558-63, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23786740

RESUMEN

BACKGROUND: The role of diffusion tensor tractography (DTT) has become increasingly important in the preoperative mapping of brain white matter. Recently, functional magnetic resonance imaging (fMRI) driven DTT has provided the ability to evaluate the spatial relationship between the corticospinal tract (CST) and motor resection tumor boundaries. The main objective of this study was improvement of the preoperative assessment of the CST in patients with gliomas involving the motor cortical areas. METHODS: Seventeen patients with gliomas involving motor cortical areas underwent 3 dimensions (3D) T1-weighted imaging for anatomical referencing, using both fMRI and diffusion tensor imaging (DTI). We used the fast-marching tractography (FMT) algorithm to define the 3D connectivity maps within the whole brain using seed points selected in the white matter adjacent to the location of fMRI activation. The target region of interest (ROI) was placed in the cerebral peduncle. Karnofsky performance status (KPS) scores were evaluated for each patient before and after surgery. RESULTS: The CST of a total seventeen patients were successfully tracked by choosing seed and target ROI on the path of the fibers. What is more, DTT can indicate preoperatively the possibility for total glioma removal or the maximum extent of surgical resection. The postoperative average KPS score for the seventeen patients enrolled increased by more than 10 points. CONCLUSIONS: Incorporation of fMRI driven DTT showed a maximum benefit in surgical treatment of gliomas. Our study of the assessment precision should enhance the accuracy of glioma operations with a resulting improvement in postoperative patient outcome.


Asunto(s)
Neoplasias Encefálicas/cirugía , Imagen de Difusión Tensora , Glioma/cirugía , Interpretación de Imagen Asistida por Computador/métodos , Tractos Piramidales/patología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Neural Regen Res ; 7(20): 1563-9, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25657694

RESUMEN

Ten Chinese patients with brain tumors involving language regions were selected. Preoperative functional MRI was performed to locate Broca's or Wernicke's area, and the cortex that was essential for language function was determined by electrocortical mapping. A site-by-site comparison between functional MRI and electrocortical mapping was performed with the aid of a neuronavigation device. Results showed that the sensitivity and specificity of preoperative functional MRI were 80.0% and 85.0% in Broca's area and 66.6% and 85.2% in Wernicke's area, respectively. These experimental findings indicate that functional MRI is an accurate, reliable technique with which to identify the location of Wernicke's area or Broca's area in patients with brain tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...