Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Am J Ophthalmol ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009239

RESUMEN

PURPOSE: To measure low perfusion area (LPA) and focal perfusion loss (FPL) in the macula using OCT angiography (OCTA) for glaucoma. DESIGN: Prospective, cross-sectional "case-control" comparison study. METHODS: A total of 60 patients with primary open-angle glaucoma (POAG) and 37 normal participants were analyzed. AngioVue 6 × 6-mm high-definition (400 × 400 transverse pixels) macular OCTA scans were performed on one eye of each participant. Flow signal was calculated using the split-spectrum amplitude-decorrelation angiography algorithm. En face ganglion cell layer plexus (GCLP) and superficial vascular complex (SVC) images were generated. Using custom software, vessel density (VD) maps were obtained by computing the fraction of area occupied by flow pixels after low-pass filtering by local averaging 41 × 41 pixels. LPA was defined by local VD below 0.5 percentile over a contiguous area above 98.5 percentile of the normal reference population. The FPL was the percent VD loss (relative to normal mean) integrated over the LPA. RESULTS: Among patients with POAG, 30 had perimetric and 30 had pre-perimetric glaucoma. The LPAGCLP-VD was 0.16±0.38 mm2 in normal and 5.78±6.30 mm2 in glaucoma subjects (P<0.001). The FPLGCLP-VD was 0.20%±0.47% in normal and 7.52%±8.84% in glaucoma subjects (P<0.001). The perimetric glaucoma diagnostic accuracy, measured by the area under the receiver operating curve, was 0.993 for LPAGCLP-VD and 0.990 for FPLGCLP-VD. The sensitivities were 96.7% and 93.3% at 95% specificity, respectively. The LPAGCLP-VD and FPLGCLP-VD had good repeatability (0.957 and 0.952 by intraclass correlation coefficient). Diagnostic accuracy was better than GCLP VD (AROC 0.950, sensitivity 83.3%) and OCT ganglion cell complex (GCC) thickness (AROC 0.927, sensitivity 80.0%), GCC focal loss volume (AROC 0.957, sensitivity 80.0%). The LPAGCLP-VD and FPLGCLP-VD correlated well with central VF mean deviations (Pearson's r=-0.716 and -0.705 respectively, both P<0.001). CONCLUSION: Assessment of macular focal perfusion loss using OCTA is useful in evaluating glaucomatous damage.

2.
Transl Vis Sci Technol ; 13(7): 15, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023443

RESUMEN

Purpose: To train and validate a convolutional neural network to segment nonperfusion areas (NPAs) in multiple retinal vascular plexuses on widefield optical coherence tomography angiography (OCTA). Methods: This cross-sectional study included 202 participants with a full range of diabetic retinopathy (DR) severities (diabetes mellitus without retinopathy, mild to moderate non-proliferative DR, severe non-proliferative DR, and proliferative DR) and 39 healthy participants. Consecutive 6 × 6-mm OCTA scans at the central macula, optic disc, and temporal region in one eye from 202 participants in a clinical DR study were acquired with a 70-kHz OCT commercial system (RTVue-XR). Widefield OCTA en face images were generated by montaging the scans from these three regions. A projection-resolved OCTA algorithm was applied to remove projection artifacts at the voxel scale. A deep convolutional neural network with a parallel U-Net module was designed to detect NPAs and distinguish signal reduction artifacts from flow deficits in the superficial vascular complex (SVC), intermediate capillary plexus (ICP), and deep capillary plexus (DCP). Expert graders manually labeled NPAs and signal reduction artifacts for the ground truth. Sixfold cross-validation was used to evaluate the proposed algorithm on the entire dataset. Results: The proposed algorithm showed high agreement with the manually delineated ground truth for NPA detection in three retinal vascular plexuses on widefield OCTA (mean ± SD F-score: SVC, 0.84 ± 0.05; ICP, 0.87 ± 0.04; DCP, 0.83 ± 0.07). The extrafoveal avascular area in the DCP showed the best sensitivity for differentiating eyes with diabetes but no retinopathy (77%) from healthy controls and for differentiating DR by severity: DR versus no DR, 77%; referable DR (rDR) versus non-referable DR (nrDR), 79%; vision-threatening DR (vtDR) versus non-vision-threatening DR (nvtDR), 60%. The DCP also showed the best area under the receiver operating characteristic curve for distinguishing diabetes from healthy controls (96%), DR versus no DR (95%), and rDR versus nrDR (96%). The three-plexus-combined OCTA achieved the best result in differentiating vtDR and nvtDR (81.0%). Conclusions: A deep learning network can accurately segment NPAs in individual retinal vascular plexuses and improve DR diagnostic accuracy. Translational Relevance: Using a deep learning method to segment nonperfusion areas in widefield OCTA can potentially improve the diagnostic accuracy of diabetic retinopathy by OCT/OCTA systems.


Asunto(s)
Retinopatía Diabética , Redes Neurales de la Computación , Vasos Retinianos , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Retinopatía Diabética/diagnóstico por imagen , Retinopatía Diabética/diagnóstico , Estudios Transversales , Vasos Retinianos/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Femenino , Angiografía con Fluoresceína/métodos , Anciano , Algoritmos , Adulto , Aprendizaje Profundo
3.
Biomed Opt Express ; 15(5): 3412-3424, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855676

RESUMEN

Comprehensive visualization of retina morphology is essential in the diagnosis and management of retinal diseases in pediatric populations. Conventional imaging techniques often face challenges in effectively capturing the peripheral retina, primarily due to the limitations in current optical designs, which lack the necessary field of view to characterize the far periphery. To address this gap, our study introduces a novel ultra-widefield optical coherence tomography angiography (OCTA) system. This system, specifically tailored for pediatric applications, incorporates an ultrahigh-speed 800 kHz swept-source laser. The system's innovative design achieves a 140° field of view while maintaining excellent optical performance. Over the last 15 months, we have conducted 379 eye examinations on 96 babies using this system. It demonstrates marked efficacy in the diagnosis of retinopathy of prematurity, providing detailed and comprehensive peripheral retinal angiography. The capabilities of the ultra-widefield handheld OCTA system in enhancing the clarity and thoroughness of retina vascularization assessments have significantly improved the precision of diagnoses and the customization of treatment strategies. Our findings underscore the system's potential to advance pediatric ophthalmology and broaden the scope of retinal imaging.

4.
Ophthalmol Retina ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38735640

RESUMEN

OBJECTIVE: Isolated retinal neovascularization (IRNV) is a common finding in patients with stage 2 and 3 retinopathy of prematurity (ROP). This study aimed to further classify the clinical course and significance of these lesions (previously described as "popcorn" based on clinical appearance) in patients with ROP as visualized with ultrawidefield OCT (UWF-OCT). DESIGN: Single center, retrospective case series. PARTICIPANTS: Images were collected from 136 babies in the Oregon Health and Science University neonatal intensive care unit. METHODS: A prototype UWF-OCT device captured en face scans (>140°), which were reviewed for the presence of IRNV along with standard zone, stage, and plus classification. In a cross-sectional analysis we compared demographics and the clinical course of eyes with and without IRNV. Longitudinally, we compared ROP severity using a clinician-assigned vascular severity score (VSS) and compared the risk of progression among eyes with and without IRNV using multivariable logistic regression. MAIN OUTCOME MEASURES: Differences in clinical demographics and disease progression between patients with and without IRNV. RESULTS: Of the 136 patients, 60 developed stage 2 or worse ROP during their disease course, 22 of whom had IRNV visualized on UWF-OCT (37%). On average, patients with IRNV had lower birth weights (BWs) (660.1 vs. 916.8 g, P = 0.001), gestational age (GA) (24.9 vs. 26.1 weeks, P = 0.01), and were more likely to present with ROP in zone I (63.4% vs. 15.8%, P < 0.001). They were also more likely to progress to stage 3 (68.2% vs. 13.2%, P < 0.001) and receive treatment (54.5% vs. 15.8%, P = 0.002). Eyes with IRNV had a higher peak VSS (5.61 vs. 3.73, P < 0.001) and averaged a higher VSS throughout their disease course. On multivariable logistic regression, IRNV was independently associated with progression to stage 3 (P = 0.02) and requiring treatment (P = 0.03), controlling for GA, BW, and initial zone 1 disease. CONCLUSIONS: In this single center study, we found that IRNV occurs in higher risk babies and was an independent risk factor for ROP progression and treatment. These findings may have implications for OCT-based ROP classifications in the future. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

5.
Opt Express ; 32(6): 10329-10347, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571248

RESUMEN

Optical coherence tomography (OCT) and its extension OCT angiography (OCTA) have become essential clinical imaging modalities due to their ability to provide depth-resolved angiographic and tissue structural information non-invasively and at high resolution. Within a field of view, the anatomic detail available is sufficient to identify several structural and vascular pathologies that are clinically relevant for multiple prevalent blinding diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and vein occlusions. The main limitation in contemporary OCT devices is that this field of view is limited due to a fundamental trade-off between system resolution/sensitivity, sampling density, and imaging window dimensions. Here, we describe a swept-source OCT device that can capture up to a 12 × 23-mm field of view in a single shot and show that it can identify conventional pathologic features such as non-perfusion areas outside of conventional fields of view. We also show that our approach maintains sensitivity sufficient to visualize novel features, including choriocapillaris morphology beneath the macula and macrophage-like cells at the inner limiting membrane, both of which may have implications for disease.


Asunto(s)
Retinopatía Diabética , Vasos Retinianos , Humanos , Vasos Retinianos/patología , Angiografía con Fluoresceína , Tomografía de Coherencia Óptica/métodos , Retina
6.
Opt Lett ; 49(5): 1201-1204, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426973

RESUMEN

High-quality swept-source optical coherence tomography (SS-OCT) requires accurate k-sampling, which is equally vital for optical coherence tomography angiography (OCTA). Most SS-OCT systems are equipped with hardware-driven k-sampling. However, this conventional approach raises concerns over system cost, optical alignment, imaging depth, and stability in the clocking circuit. This work introduces an optimized numerical k-sampling method to replace the additional k-clock hardware. Using this method, we can realize high axial resolution (4.9-µm full-width-half-maximum, in air) and low roll-off (2.3 dB loss) over a 4-mm imaging depth. The high axial resolution and sensitivity achieved by this simple numerical method can reveal anatomic and microvascular structures with structural OCT and OCTA in both macular and deeper tissues, including the lamina cribrosa, suggesting its usefulness in imaging retinopathy and optic neuropathy.


Asunto(s)
Angiografía , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Angiografía con Fluoresceína/métodos
7.
Biomed Opt Express ; 15(2): 1059-1073, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38404311

RESUMEN

A real-time line-field optical coherence tomography (LF-OCT) system is demonstrated with image acquisition rates of up to 5000 B-frames or 2.5 million A-lines per second for 500 A-lines per B-frame. The system uses a high-speed low-cost camera to achieve continuous data transfer rates required for real-time imaging, allowing the evaluation of future applications in clinical or intraoperative environments. The light source is an 840 nm super-luminescent diode. Leveraging parallel computing with GPU and high speed CoaXPress data transfer interface, we were able to acquire, process, and display OCT data with low latency. The studied system uses anamorphic beam shaping in the detector arm, optimizing the field of view and sensitivity for imaging biological tissue at cellular resolution. The lateral and axial resolution measured in air were 1.7 µm and 6.3 µm, respectively. Experimental results demonstrate real-time inspection of the trabecular meshwork and Schlemm's canal on ex vivo corneoscleral wedges and real-time imaging of endothelial cells of human subjects in vivo.

8.
Adv Mater ; 36(15): e2310306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38194699

RESUMEN

The enzymatic activities of Furin, Transmembrane serine proteinase 2 (TMPRSS2), Cathepsin L (CTSL), and Angiotensin-converting enzyme 2 (ACE2) receptor binding are necessary for the entry of coronaviruses into host cells. Precise inhibition of these key proteases in ACE2+ lung cells during a viral infection cycle shall prevent viral Spike (S) protein activation and its fusion with a host cell membrane, consequently averting virus entry to the cells. In this study, dual-drug-combined (TMPRSS2 inhibitor Camostat and CTSL inhibitor E-64d) nanocarriers (NCs) are constructed conjugated with an anti-human ACE2 (hACE2) antibody and employ Red Blood Cell (RBC)-hitchhiking, termed "Nanoengineered RBCs," for targeting lung cells. The significant therapeutic efficacy of the dual-drug-loaded nanoengineered RBCs in pseudovirus-infected K18-hACE2 transgenic mice is reported. Notably, the modular nanoengineered RBCs (anti-receptor antibody+NCs+RBCs) precisely target key proteases of host cells in the lungs to block the entry of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), regardless of virus variations. These findings are anticipated to benefit the development of a series of novel and safe host-cell-protecting antiviral therapies.


Asunto(s)
COVID-19 , Catepsina L , SARS-CoV-2 , Inhibidores de Serina Proteinasa , Animales , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Catepsina L/antagonistas & inhibidores , Catepsina L/metabolismo , COVID-19/prevención & control , COVID-19/virología , Eritrocitos , Pulmón/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico
9.
Ophthalmol Retina ; 8(2): 108-115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37673397

RESUMEN

PURPOSE: Microaneurysms (MAs) have distinct, oval-shaped, hyperreflective walls on structural OCT, and inconsistent flow signal in the lumen with OCT angiography (OCTA). Their relationship to regional macular edema in diabetic retinopathy (DR) has not been quantitatively explored. DESIGN: Retrospective, cross-sectional study. PARTICIPANTS: A total of 99 participants, including 23 with mild, nonproliferative DR (NPDR), 25 with moderate NPDR, 34 with severe NPDR, and 17 with proliferative DR. METHODS: We obtained 3 × 3-mm scans with a commercial device (Solix, Visionix/Optovue) in 99 patients with DR. Trained graders manually identified MAs and their location relative to the anatomic layers from cross-sectional OCT. Microaneurysms were first classified as perfused if flow signal was present in the OCTA channel. Then, perfused MAs were further classified into fully and partially perfused MAs based on the flow characteristics in en face OCTA. The presence of retinal fluid based on OCT near MAs was compared between perfused and nonperfused types. We also compared OCT-based MA detection to fundus photography (FP)- and fluorescein angiography (FA)-based detection. MAIN OUTCOME MEASURES: OCT-identified MAs can be classified according to colocalized OCTA flow signal into fully perfused, partially perfused, and nonperfused types. Fully perfused MAs may be more likely to be associated with diabetic macular edema (DME) than those without flow. RESULTS: We identified 308 MAs (166 fully perfused, 88 partially perfused, 54 nonperfused) in 42 eyes using OCT and OCTA. Nearly half of the MAs identified in this study straddle the inner nuclear layer and outer plexiform layer. Compared with partially perfused and nonperfused MAs, fully perfused MAs were more likely to be associated with local retinal fluid. The associated fluid volumes were larger with fully perfused MAs compared with other types. OCT/OCTA detected all MAs found on FP. Although not all MAs seen with FA were identified with OCT, some MAs seen with OCT were not visible with FA or FP. CONCLUSIONS: OCT-identified MAs with colocalized flow on OCTA are more likely to be associated with DME than those without flow. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Asunto(s)
Retinopatía Diabética , Edema Macular , Microaneurisma , Humanos , Retinopatía Diabética/complicaciones , Vasos Retinianos , Microaneurisma/diagnóstico , Microaneurisma/etiología , Estudios Transversales , Edema Macular/etiología , Edema Macular/complicaciones , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Angiografía con Fluoresceína , Retina
10.
IEEE Trans Biomed Eng ; 71(1): 14-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37405891

RESUMEN

OBJECTIVE: Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map (BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers' decision-making. METHODS: A data set including 456 macular scans were graded as non-referable or referable DR based on current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. The BAM generation framework was designed by combing two U-shaped generators to provide meaningful interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable by the classifier from non-referable scans. RESULTS: The generated BAMs highlighted known pathologic features including nonperfusion area and retinal fluid. CONCLUSION/SIGNIFICANCE: A fully interpretable classifier based on these highlights could help clinicians better utilize and verify automated DR diagnosis.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/diagnóstico por imagen , Retina/diagnóstico por imagen , Algoritmos , Angiografía , Tomografía de Coherencia Óptica/métodos , Biomarcadores
11.
Ophthalmol Sci ; 4(2): 100382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37868804

RESUMEN

Purpose: To assess whether the combination of en face OCT and OCT angiography (OCTA) can capture observable, but subtle, structural changes that precede clinically evident retinal neovascularization (RNV) in eyes with diabetic retinopathy (DR). Design: Retrospective, longitudinal study. Participants: Patients with DR that had at least 2 visits. Methods: We obtained wide-field OCTA scans of 1 eye from each participant and generated en face OCT, en face OCTA, and cross-sectional OCTA. We identified eyes with RNV sprouts, defined as epiretinal hyperreflective materials on en face OCT with flow signals breaching the internal limiting membrane on the cross-sectional OCTA without recognizable RNV on en face OCTA and RNV fronds, defined as recognizable abnormal vascular structures on the en face OCTA. We examined the corresponding location from follow-up or previous visits for the presence or progression of the RNV. Main Outcome Measures: The characteristics and longitudinal observation of early signs of RNV. Results: From 71 eyes, we identified RNV in 20 eyes with the combination of OCT and OCTA, of which 13 (65%) were photographically graded as proliferative DR, 6 (30%) severe nonproliferative DR, and 1 (5%) moderate nonproliferative diabetic retinopathy. From these eyes, we identified 38 RNV sprouts and 26 RNV fronds at the baseline. Thirty-four RNVs (53%) originated from veins, 24 (38%) were from intraretinal microabnormalities, and 6 (9%) were from a nondilated capillary bed. At the final visit, 53 RNV sprouts and 30 RNV fronds were detected. Ten eyes (50%) showed progression, defined as having a new RNV lesion or the development of an RNV frond from an RNV sprout. Four (11%) RNV sprouts developed into RNV fronds with a mean interval of 7.0 months. Nineteen new RNV sprouts developed during the follow-up, whereas no new RNV frond was observed outside an identified RNV sprout. The eyes with progression were of younger age (P = 0.014) and tended to be treatment naive (P = 0.07) compared with eyes without progression. Conclusions: Longitudinal observation demonstrated that a combination of en face OCT and cross-sectional OCTA can identify an earlier form of RNV before it can be recognized on en face OCTA. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

12.
Biomed Opt Express ; 14(11): 5682-5695, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38021127

RESUMEN

In this study, we present an optical coherence tomographic angiography (OCTA) prototype using a 500 kHz high-speed swept-source laser. This system can generate a 75-degree field of view with a 10.4 µm lateral resolution with a single acquisition. With this prototype we acquired detailed, wide-field, and plexus-specific images throughout the retina and choroid in eyes with diabetic retinopathy, detecting early retinal neovascularization and locating pathology within specific retinal slabs. Our device could also visualize choroidal flow and identify signs of key biomarkers in diabetic retinopathy.

13.
ArXiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873013

RESUMEN

Purpose: Microaneurysms (MAs) have distinct, oval-shaped, hyperreflective walls on structural OCT, and inconsistent flow signal in the lumen with OCT angiography (OCTA). Their relationship to regional macular edema in diabetic retinopathy (DR) has not been quantitatively explored. Design: Retrospective, cross-sectional study. Participants: A total of 99 participants, including 23 with mild, nonproliferative DR (NPDR), 25 with moderate NPDR, 34 with severe NPDR, and 17 with proliferative DR. Methods: We obtained 3 × 3-mm scans with a commercial device (Solix, Visionix/Optovue) in 99 patients with DR. Trained graders manually identified MAs and their location relative to the anatomic layers from cross-sectional OCT. Microaneurysms were first classified as perfused if flow signal was present in the OCTA channel. Then, perfused MAs were further classified into fully and partially perfused MAs based on the flow characteristics in en face OCTA. The presence of retinal fluid based on OCT near MAs was compared between perfused and nonperfused types. We also compared OCT-based MA detection to fundus photography (FP)- and fluorescein angiography (FA)-based detection. Main Outcome Measures: OCT-identified MAs can be classified according to colocalized OCTA flow signal into fully perfused, partially perfused, and nonperfused types. Fully perfused MAs may be more likely to be associated with diabetic macular edema (DME) than those without flow. Results: We identified 308 MAs (166 fully perfused, 88 partially perfused, 54 nonperfused) in 42 eyes using OCT and OCTA. Nearly half of the MAs identified in this study straddle the inner nuclear layer and outer plexiform layer. Compared with partially perfused and nonperfused MAs, fully perfused MAs were more likely to be associated with local retinal fluid. The associated fluid volumes were larger with fully perfused MAs compared with other types. OCT/OCTA detected all MAs found on FP. Although not all MAs seen with FA were identified with OCT, some MAs seen with OCT were not visible with FA or FP. Conclusions: OCT-identified MAs with colocalized flow on OCTA are more likely to be associated with DME than those without flow. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article. Ophthalmology Retina 2023;■:1-8 © 2023 by the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

14.
Biomed Opt Express ; 14(9): 4542-4566, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791289

RESUMEN

Optical coherence tomography angiography (OCTA) is a high-resolution, depth-resolved imaging modality with important applications in ophthalmic practice. An extension of structural OCT, OCTA enables non-invasive, high-contrast imaging of retinal and choroidal vasculature that are amenable to quantification. As such, OCTA offers the capability to identify and characterize biomarkers important for clinical practice and therapeutic research. Here, we review new methods for analyzing biomarkers and discuss new insights provided by OCTA.

15.
Opt Lett ; 48(15): 3921-3924, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527083

RESUMEN

This pilot study reports the development of optical coherence tomography (OCT) split-spectrum amplitude-decorrelation optoretinography (SSADOR) that measures spatially resolved photoreceptor response to light stimuli. Using spectrally multiplexed narrowband OCT, SSADOR improves sensitivity to microscopic changes without the need for cellular resolution or optical phase detection. Therefore, a large field of view (up to 3 × 1 mm2 demonstrated) using conventional OCT instrument design can be achieved, paving the way for clinical translation. SSADOR promises a fast, objective, and quantifiable functional biomarker for photoreceptor damage in the macula.


Asunto(s)
Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Proyectos Piloto
16.
Prog Retin Eye Res ; 97: 101206, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37499857

RESUMEN

There remain many unanswered questions on how to assess and treat the pathology and complications that arise from diabetic retinopathy (DR). Optical coherence tomography angiography (OCTA) is a novel and non-invasive three-dimensional imaging method that can visualize capillaries in all retinal layers. Numerous studies have confirmed that OCTA can identify early evidence of microvascular changes and provide quantitative assessment of the extent of diseases such as DR and its complications. A number of informative OCTA metrics could be used to assess DR in clinical trials, including measurements of the foveal avascular zone (FAZ; area, acircularity, 3D para-FAZ vessel density), vessel density, extrafoveal avascular zones, and neovascularization. Assessing patients with DR using a full-retinal slab OCTA image can limit segmentation errors and confounding factors such as those related to center-involved diabetic macular edema. Given emerging data suggesting the importance of the peripheral retinal vasculature in assessing and predicting DR progression, wide-field OCTA imaging should also be used. Finally, the use of automated methods and algorithms for OCTA image analysis, such as those that can distinguish between areas of true and false signals, reconstruct images, and produce quantitative metrics, such as FAZ area, will greatly improve the efficiency and standardization of results between studies. Most importantly, clinical trial protocols should account for the relatively high frequency of poor-quality data related to sub-optimal imaging conditions in DR and should incorporate time for assessing OCTA image quality and re-imaging patients where necessary.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Tomografía de Coherencia Óptica/métodos , Angiografía con Fluoresceína/métodos , Vasos Retinianos/patología
17.
Phys Chem Chem Phys ; 25(25): 16835-16843, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37313685

RESUMEN

There exist resonance degeneracy and nesting in the spherical dielectric cavity embedded in an infinite zero-index-material (ZIM). However, its spontaneous emission (SE) has been scarcely studied. Here, we investigate the inhibition and enhancement of SE in spherical dielectric cavities surrounded by ZIMs at the nanoscale. In the cavities embedded in ε-near-zero materials, by adjusting the polarization of the emitter, the SE of the emitter can be controlled from inhibition to enhancement, ranging from 10-2 to dozens. For the cavities embedded in µ-near-zero or ε-µ-near-zero materials, the enhancement of SE is also achieved in a large range of cavities. These findings provide more application possibilities in single-photon sources, deformable optical devices with ZIMs, etc.

18.
Cell Death Dis ; 14(5): 321, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173309

RESUMEN

With the expansion of the aging population, age-associated sarcopenia (AAS) has become a severe clinical disease of the elderly and a key challenge for healthy aging. Regrettably, no approved therapies currently exist for treating AAS. In this study, clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were administrated to two classic mouse models (SAMP8 mice and D-galactose-induced aging mice), and their effects on skeletal muscle mass and function were investigated by behavioral tests, immunostaining, and western blotting. Core data results showed that hUC-MSCs significantly restored skeletal muscle strength and performance in both mouse models via mechanisms including raising the expression of crucial extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging. For the first time, the study comprehensively evaluates and demonstrates the preclinical efficacy of clinical-grade hUC-MSCs for AAS in two mouse models, which not only provides a novel model for AAS, but also highlights a promising strategy to improve and treat AAS and other age-associated muscle diseases. This study comprehensively evaluates the preclinical efficacy of clinical-grade hUC-MSCs in treating age-associated sarcopenia (AAS), and demonstrates that hUC-MSCs restore skeletal muscle strength and performance in two AAS mouse models via raising the expression of extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging, which highlights a promising strategy for AAS and other age-associated muscle diseases.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Sarcopenia , Humanos , Ratones , Animales , Anciano , Diferenciación Celular , Sarcopenia/terapia , Músculo Esquelético , Células Madre Mesenquimatosas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical
19.
J Vitreoretin Dis ; 7(3): 226-231, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188216

RESUMEN

Introduction: To assess the diagnostic accuracy of automatically quantified macular fluid volume (MFV) for treatment-required diabetic macular edema (DME). Methods: This retrospective cross-sectional study included eyes with DME. The commercial software on optical coherence tomography (OCT) produced the central subfield thickness (CST), and a custom deep-learning algorithm automatically segmented the fluid cysts and quantified the MFV from the volumetric scans of an OCT angiography system. Retina specialists treated patients per standard of care based on clinical and OCT findings without access to the MFV. The main outcome measures were the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity of the CST, MFV, and visual acuity (VA) for treatment indication. Results: Of 139 eyes, 39 (28%) were treated for DME during the study period and 101 (72%) were previously treated. The algorithm detected fluid in all eyes; however, only 54 eyes (39%) met the DRCR.net criteria for center-involved ME. The AUROC of MFV predicting a treatment decision of 0.81 was greater than that of CST (0.67) (P = .0048). Untreated eyes that met the optimal threshold for treatment-required DME based on MFV (>0.031 mm3) had better VA than treated eyes (P = .0053). A multivariate logistic regression model showed that MFV (P = .0008) and VA (P = .0061) were significantly associated with a treatment decision, but CST was not. Conclusions: MFV had a higher correlation with the need for treatment for DME than CST and may be especially useful for ongoing management of DME.

20.
Biomed Opt Express ; 14(5): 2040-2054, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206138

RESUMEN

Projection artifacts are a significant limitation of optical coherence tomographic angiography (OCTA). Existing techniques to suppress these artifacts are sensitive to image quality, becoming less reliable on low-quality images. In this study, we propose a novel signal attenuation-compensated projection-resolved OCTA (sacPR-OCTA) algorithm. In addition to removing projection artifacts, our method compensates for shadows beneath large vessels. The proposed sacPR-OCTA algorithm improves vascular continuity, reduces the similarity of vascular patterns in different plexuses, and removes more residual artifacts compared to existing methods. In addition, the sacPR-OCTA algorithm better preserves flow signal in choroidal neovascular lesions and shadow-affected areas. Because sacPR-OCTA processes the data along normalized A-lines, it provides a general solution for removing projection artifacts agnostic to the platform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA