Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(11): 19508-19516, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859084

RESUMEN

In this paper, we presented a novel double-layer light-trapping structure consisting of nanopores and nanograting positioned on both the surface and bottom of a gallium oxide-based solar-blind photodetector. Utilizing the finite element method (FEM), we thoroughly investigated the light absorption enhancement capabilities of this innovative design. The simulation results show that the double-layer nanostructure effectively combines the light absorption advantages of nanopores and nanogratings. Compared with thin film devices and devices with only nanopore or nanograting structures, double-layer nanostructured devices have a higher light absorption, achieving high light absorption in the solar blind area.

2.
Phys Chem Chem Phys ; 26(16): 12564-12572, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38595124

RESUMEN

The ß-Ga2O3 crystal is a significant ultrawide bandgap semiconductor with great potential in ultraviolet optoelectronics and high-power devices. Planar defects in ß-Ga2O3 have been observed in experiments, but their structures, influences, formation mechanism, and controlling methods remain to be studied. We conducted a comprehensive study of ß-Ga2O3 planar defects using density functional theory. We determined the atomic structures of planar defects (stacking faults and twins) on (100), (001), and (-201) planes in ß-Ga2O3 crystals and calculated the formation energy and band structure of each defect. Our results indicate that the formation energy of stacking faults on the (100) plane and twins on the (100) and (-201) planes was extremely low, which explained why these planar defects were observed readily. We also studied the influence of common impurities (Si, Sn, Al, H) and vacancies in ß-Ga2O3 crystals on the formation of these planar defects. Our findings revealed that specific impurities and vacancies could facilitate the formation of planar defects or even make them spontaneous. This research provides critical insights into the atomic structures of planar defects in ß-Ga2O3, and explains why they form readily from the perspective of formation energy. These insights are important for future research into ß-Ga2O3 defects.

3.
Materials (Basel) ; 17(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38255597

RESUMEN

Single crystal fibers combine the great specific surface area of fibers and the single crystal property of the bulk crystal which shows great potential for a high-power laser. For an Er-doped crystal, due to the fluorescence quenching at the 3 µm wavelength, high Er doping is necessary to increase the fluorescent up-conversion for the breaking limitation. However, a high Er doping concentration must lead to high heat accumulation, resulting in poor laser performance. Compared with an Er-doped bulk crystal, Er-doped SCF has the great potential to remove the heat in the crystal, and it is easy to obtain a high power. In this paper, Er: Y3Sc2Ga3O12 (Er: YSGG) single crystals were successfully grown using the micro-pulling-down method (µ-PD). Owing to the stably grown interface, the diameter of the crystal is 2 mm with a length up to 80 mm. Then, the measurements of Laue spots and Er3+ distribution indicated that our crystals have a high quality. Based on the as-prepared Er: YSGG SCF, the continuous-wave (CW) laser operations at 2794 nm were realized. The maximum output was 166 mW with a slope efficiency of up to 10.99%. These results show that Er: YSGG SCF is a suitable material for future high-power 3 µm laser operation.

4.
ACS Appl Mater Interfaces ; 16(3): 3685-3693, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38226599

RESUMEN

Amorphous In2O3 film is emerging as a promising oxide semiconductor for next-generation electronics and optoelectronics owing to high mobility and wide band gap. However, the persistent photocurrent phenomenon and high carrier concentration in amorphous In2O3 film are challenging the photodetection performances, resulting in a long response time and low Ilight/Idark ratio. In this work, the In2O3/PbI2 heterojunction is constructed by an all-solution synthesis process to inhibit the persistent photocurrent phenomenon and large dark current. Benefiting from the built-in electric field at the heterojunction interface, the In2O3/PbI2 heterojunction photodetector exhibits excellent self-powered photodetection performances with an ultralow dark current of 10-12 A, a high Ilight/Idark ratio of 104, and fast response times of 0.6/0.6 ms. Furthermore, the entire solution synthesis process and amorphous characteristics enable the fabrication of an In2O3/PbI2 heterojunction photodetector on arbitrary substrates to realize specific functions. When configured onto the polyimide substrate, the In2O3/PbI2 heterojunction photodetector shows excellent mechanical flexibility, bending endurance, and photoresponse stability. When implanted onto the transparent substrate, the In2O3/PbI2 heterojunction photodetector exhibits an outstanding omnidirectional self-powdered photodetection performance and imaging capability. All results pave the way for an all-solution-processed amorphous In2O3 film in advanced high-performance photodetectors.

5.
ACS Omega ; 8(50): 47874-47882, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144060

RESUMEN

Chromium-doped Ga2O3, with intense Cr3+-related red-infrared light emission, is a promising semiconductor material for optical sensors. This work constitutes a comprehensive study of the thermoluminescence properties of Cr-, Mg-codoped ß-Ga2O3 single crystals, both prior to and after proton irradiation. The thermoluminescence investigation includes a thorough analysis of measurements with different ß- irradiation doses used to populate the trap levels, with preheating steps to disentangle overlapping peaks (TM-TSTOP and initial rise methods) and finally by computationally fitting to a theoretical expression. At least three traps with activation energies of 0.84, 1.0, and 1.1 eV were detected. By comparison with literature reports, they can be assigned to different defect complexes involving oxygen vacancies and/or common contaminants/dopants. Interestingly, the thermoluminescence signal is enhanced by the proton irradiation while the type of traps is maintained. Finally, the pristine glow curve was recovered on the irradiated samples after an annealing step at 923 K for 10 s. These results contribute to a better understanding of the defect levels in Cr-, Mg-codoped ß-Ga2O3 and show that electrons released from these traps lead to Cr3+-related light emission that can be exploited in dosimetry applications.

6.
JACS Au ; 3(6): 1634-1641, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37388691

RESUMEN

The field of polyhalogen chemistry, specifically polyhalogen anions (polyhalides), is rapidly evolving. Here, we present the synthesis of three sodium halides with unpredicted chemical compositions and structures (tP10-Na2Cl3, hP18-Na4Cl5, and hP18-Na4Br5), a series of isostructural cubic cP8-AX3 halides (NaCl3, KCl3, NaBr3, and KBr3), and a trigonal potassium chloride (hP24-KCl3). The high-pressure syntheses were realized at 41-80 GPa in diamond anvil cells laser-heated at about 2000 K. Single-crystal synchrotron X-ray diffraction (XRD) provided the first accurate structural data for the symmetric trichloride Cl3- anion in hP24-KCl3 and revealed the existence of two different types of infinite linear polyhalogen chains, [Cl]∞n- and [Br]∞n-, in the structures of cP8-AX3 compounds and in hP18-Na4Cl5 and hP18-Na4Br5. In Na4Cl5 and Na4Br5, we found unusually short, likely pressure-stabilized, contacts between sodium cations. Ab initio calculations support the analysis of structures, bonding, and properties of the studied halogenides.

7.
ACS Appl Mater Interfaces ; 15(27): 32561-32568, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368844

RESUMEN

In this work, square nanopore arrays were developed on the surface of ß-Ga2O3 microflakes using focused ion beam (FIB) etching, and solar-blind photodetectors (PDs) were fabricated based on the ß-Ga2O3 microflakes with square nanopore arrays. The ß-Ga2O3 microflake-based device was transformed from a gate voltage depletion mode to an oxygen depletion mode by FIB etching. The developed device exhibited excellent solar-blind PD performance with extremely high responsivity (1.8 × 105 at 10 V), detectivity (3.4 × 1018 Jones at 10 V), and light-to-dark ratio (9.3 × 108 at 5 V) as well as good repeatability and excellent stability. The intrinsic mechanism responsible for this performance was then systematically discussed. This work opens up a new avenue for the fabrication of high-performance ß-Ga2O3-based low-dimensional PDs with high reproducibility by employing the FIB etching process.

8.
ACS Appl Mater Interfaces ; 15(21): 25831-25837, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199150

RESUMEN

Two-dimensional (2D) metal oxides exhibit extraordinary mechanical and electronic properties, leading to new paradigms in the design of electronic and optical systems. However, as a representative, a 2D Ga2O3-based memristor has rarely been touched, which is hindered by challenges associated with large-scale material synthesis. In this work, the ultrathin 2D Ga2O3 layer (∼3 nm thick) formation on the liquid gallium (Ga) surface is transferred with lateral dimensions over several centimeters on a substrate via the squeeze-printing strategy. 2D Ga2O3-based memristors exhibit forming-free and bipolar switching behaviors, which also reveal essential functions of biological synapse, including paired-pulse facilitation, spiking timing-dependent plasticity, and long-term depression and potentiation. These results demonstrate the potential of 2D Ga2O3 material for neuromorphic computing and open up an avenue for future electronics application, such as deep UV photodetectors, multimode nanoresonators, and power switching devices.

9.
Opt Express ; 30(25): 44617-44627, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522883

RESUMEN

In this paper, Ti3C2Tx MXene prepared by LiF/HCl etching method was spin-coated on glass substrate and sapphire substrate as the saturable absorber (SA), and the MXene SA is combined with Yb: LuAG single crystal fiber (SCF) for the first time to achieve a 1.05 µm passively Q-switched pulsed laser output with the average power, pulse width, and repetition frequency of 1.989 W, 149.6 ns, and 365.44 kHz, respectively, which is the highest average power ever reported for passively Q-switched SCF pulsed lasers. This work enriches the research on SCF pulsed lasers and provides a feasible approach for achieving high-power all-solid-state pulsed lasers.

10.
ACS Appl Mater Interfaces ; 14(41): 46748-46755, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36196627

RESUMEN

Realizing omnidirectional self-powered photodetectors is central to advancing next-generation portable and smart photodetector systems. However, the traditional omnidirectional photodetector is typically achieved by integrating complex hemispherical microlens on multiple photodetectors, which makes the detection system cumbersome and restricts its application in the portable field. Here, facile and high-performance flexible omnidirectional self-powered photodetectors are achieved by solution-processed two-dimensional (2D) layered PbI2 nanoplates on transparent conducting substrates. Characterization of PbI2 nanoplates microstructural/compositional and their photodetection properties have been systematically characterized. Under the irradiation of a 405 nm laser, the photodetectors exhibit an impressively low dark current of 10-13 A, a high light on/off ratio up to 106, and a fast rise/decay response time of 2/3 ms. Importantly, when light irradiates the photodetector at 5°, it can still maintain high photodetection properties, realizing almost 360° omnidirectional self-powered photodetection. What is more, these self-powered photodetectors exhibit robust omnidirectional photoresponse stability of flexibility even after bending for 1200 cycles. Thus, this work broadens the applicability of 2D layered nanoplates for further extending its applications in advanced optoelectronic devices.

11.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35957023

RESUMEN

ß-Ga2O3 nanostructures, including nanowires (NWs), nanosheets (NSHs), and nanorods (NRs), were synthesized using thermally dewetted Au nanoparticles as catalyst in a chemical vapor deposition process. The morphology of the as-grown ß-Ga2O3 nanostructures depends strongly on the growth temperature and time. Successful growth of ß-Ga2O3 NWs with lengths of 7-25 µm, NSHs, and NRs was achieved. It has been demonstrated that the vapor-liquid-solid mechanism governs the NW growth, and the vapor-solid mechanism occurs in the growth of NSHs and NRs. The X-ray diffraction analysis showed that the as-grown nanostructures were highly pure single-phase ß-Ga2O3. The bandgap of the ß-Ga2O3 nanostructures was determined to lie in the range of 4.68-4.74 eV. Characteristic Raman peaks were observed with a small blue and red shift, both of 1-3 cm-1, as compared with those from the bulk, indicating the presence of internal strain and defects in the as-grown ß-Ga2O3 nanostructures. Strong photoluminescence emission in the UV-blue spectral region was obtained in the ß-Ga2O3 nanostructures, regardless of their morphology. The UV (374-377 nm) emission is due to the intrinsic radiative recombination of self-trapped excitons present at the band edge. The strong blue (404-490 nm) emissions, consisting of five bands, are attributed to the presence of the complex defect states in the donor (VO) and acceptor (VGa or VGa-O). These ß-Ga2O3 nanostructures are expected to have potential applications in optoelectronic devices such as tunable UV-Vis photodetectors.

12.
Materials (Basel) ; 15(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35888286

RESUMEN

A high-quality Er3+-doped (Gd1-xLux)3Ga5O12 (Er: LGGG) laser crystal with a size of Φ 36 × 45 mm3 was successfully grown by the Czochralski (Cz) method for the first time. The effective segregation coefficient of Er3+ was determined to be 0.97, close to 1, and, thus, the uniform high-quality Er: LGGG crystal can be grown. In addition, the thermal and spectroscopic properties of Er: LGGG were investigated. Based on the measured characteristics, the Er: LGGG crystal has a huge potential for use in the 3.0 µm mid-infrared laser because of its outstanding optical quality, extraordinary thermal conductivity and stable structure.

13.
Nanotechnology ; 33(23)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35240581

RESUMEN

Formation of Au, Pt, and bimetallic Au-Pt nanostructures by thermal dewetting of single-layer Au, Pt and bilayer Au-Pt thin films on Si substrates was systematically studied. The solid-state dewetting of both single-layer and bilayer metallic films was shown to go through heterogeneous void initiation followed by void growth via capillary agglomeration. For the single-layer of Au and Pt films, the void growth started at a temperature right above the Hüttig temperature, at which the atoms at the surface or at defects become mobile. Uniformly distributed Au (7 ± 1 nm to 33 ± 8 nm) and Pt (7 ± 1 nm) NPs with monodispersed size distributions were produced from complete dewetting achieved for thinner 1.7-5.5 nm thick Au and 1.4 nm thick Pt films, respectively. The NP size is strongly dependent on the initial thin film thickness, but less so on temperature and time. Thermal dewetting of Au-Pt bilayer films resulted in partial dewetting only, forming isolated nano-islands or large particles, regardless of sputtering order and total thin film thickness. The increased resistance to thermal dewetting shown in the Au-Pt bilayer films as compared to the individual Au or Pt layer is a reflection of the stabilizing effect that occurs upon adding Pt to Au in the bimetallic system. Energy dispersive x-ray spectroscopic analysis showed that the two metals in the bilayer films broke up together instead of dewetting individually. According to the x-ray diffraction analysis, the produced Au-Pt nanostructures are phase-segregated, consisting of an Au-rich phase and a Pt-rich phase.

14.
Commun Chem ; 5(1): 122, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36697723

RESUMEN

Chemical stability of the alkali halides NaCl and KCl has allowed for their use as inert media in high-pressure high-temperature experiments. Here we demonstrate the unexpected reactivity of the halides with metals (Y, Dy, and Re) and iron oxide (FeO) in a laser-heated diamond anvil cell, thus providing a synthetic route for halogen-containing binary and ternary compounds. So far unknown chlorides, Y2Cl and DyCl, and chloride carbides, Y2ClC and Dy2ClC, were synthesized at ~40 GPa and 2000 K and their structures were solved and refined using in situ single-crystal synchrotron X-ray diffraction. Also, FeCl2 with the HP-PdF2-type structure, previously reported at 108 GPa, was synthesized at ~160 GPa and 2100 K. The results of our ab initio calculations fully support experimental findings and reveal the electronic structure and chemical bonding in these compounds.

15.
RSC Adv ; 10(25): 14746-14752, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497154

RESUMEN

A low Schottky barrier height (SBH) of metal-semiconductor contact is essential for achieving high performance electronic devices. Based on first principles calculations, we have comprehensively investigated the interfacial properties of ß-Ga2O3 (100) with different metals including Mg, Ni, Cu, Pd and Pt. SBHs have been calculated via layered partial density of states (PDOS) and validated by visual wavefunctions. The results surprisingly show that Mg contact possesses the lowest SBH of 0.23 eV, while other SBHs range from 1.06 eV for Ni, 1.17 eV for Pd and 1.27 eV for Cu to 1.39 eV for Pt. This shows that SBHs of ß-Ga2O3 are not fully dependent on metal work functions due to a Fermi level pinning effect. The tunneling barrier was also calculated via electrostatic potential with a 72.85% tunneling probability of the Mg/Ga2O3 interface. The present study will provide an insight into characteristics of Ga2O3/metal interfaces and give guidance for metal choice for Ga2O3 electronic devices.

16.
ACS Appl Mater Interfaces ; 11(7): 7131-7137, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30676013

RESUMEN

To suppress noise from full daylight background or environmental radiation, a spectrally selective solar-blind photodetector is widely required in many applications that need detection of light within a specific spectral range. Here, we present highly narrow-band solar-blind photodetectors by light polarization engineering of the anisotropic transitions in ß-Ga2O3 single crystals. The polarized transmittance characteristics reveal that direct transitions from valance subbands to the conduction band minimum are tuned between 4.53 and 4.76 eV for the light polarized E// c and E// b. The polarization-dependent photoresponsivity verifies that the order of fundamental band-to-band transitions obeys well the selection rules in terms of the valence-band splitting in the ß-Ga2O3 monoclinic crystal band structure. By combining an orthogonally aligned identical ß-Ga2O3 (100) single crystal filter with a detector measured at a chopper frequency of 17 Hz, a highly narrow-band detection is produced with a peak responsivity of 0.23 A/W at 262 nm, an EQE of 110%, a bandwidth of 10 nm, a light rejection ratio over 800, and a response time of 0.86 ms. This provides a new paradigm for a narrow-band solar-blind photodetector with broad applications where background noise emission needs to be suppressed.

17.
Nanoscale Res Lett ; 14(1): 8, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30617428

RESUMEN

The edge-terminated Au/Ni/ß-Ga2O3 Schottky barrier diodes were fabricated by using argon implantation to form the high-resistivity layers at the periphery of the anode contacts. With the implantation energy of 50 keV and dose of 5 × 1014 cm-2 and 1 × 1016 cm-2, the reverse breakdown voltage increases from 209 to 252 and 451 V (the maximum up to 550 V) and the Baliga figure-of-merit (VBR2/Ron) also increases from 25.7 to 30.2 and 61.6 MW cm-2, about 17.5% and 140% enhancement, respectively. According to the 2D simulation, the electric fields at the junction corner are smoothed out after argon implantation and the position of the maximum breakdown electric filed, 5.05 MV/cm, changes from the anode corner at the interface to the overlap corner just under the implantation region. The temperature dependence of the forward characteristics was also investigated.

18.
RSC Adv ; 9(39): 22567-22575, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35519442

RESUMEN

Single crystal fibers (SCFs), especially ytterbium (Yb) doped crystal fibers, have great potential in the field of high-power lasers. Colorless Yb:YAG single crystal fibers were fabricated using a laser heated pedestal growth (LHPG) method with a diameter fluctuation of less than 2% and a length to diameter ratio greater than 320 : 1. An abnormal color issue exists with respect to Yb:YAG crystals. The origin of coloration was studied via density functional theory, single-crystal X-ray diffraction, XPS and Raman spectroscopy and it was confirmed that the cyan coloration of Yb:YAG crystals is due to oxygen vacancies. Yb:YAG SCFs prepared via the LHPG method could avoid this type of defect due to the large specific surface area and melt convection caused by surface tension. The fundamental properties of the cyan Yb:YAG crystal source rod and colorless Yb:YAG SCFs were systematically investigated. The colorless Yb:YAG SCFs have higher infrared transmittance and thermal conductivity. The distributions of Yb3+ along the radial and axial directions were also measured. Meanwhile we demonstrated the propagation loss and a fiber laser using the colorless Yb:YAG SCFs, obtaining a minimum loss coefficient of 0.008 dB cm-1 and a maximum continuous-wave (CW) output power of 3.62 W. The colorless Yb:YAG SCFs with good thermal conductivity, low propagation loss, wide transparency and uniform ion distribution show promise for acting as the host material in single-mode lasers.

19.
RSC Adv ; 8(12): 6544-6550, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35540376

RESUMEN

ß-Ga2O3, a semiconductor material, has attracted considerable attention given its potential applications in high-power devices, such as high-performance field-effect transistors. For decades, ß-Ga2O3 has been processed through chemical mechanical polishing (CMP). Nevertheless, the understanding of the effect of OH- on ß-Ga2O3 processed through CMP with an alkaline slurry remains limited. In this study, ß-Ga2O3 substrates were successively subjected to mechanical polishing (MP), CMP and etching. Then, to investigate the changes that occurred on the surfaces of the samples, samples were characterised through atomic force microscopy (AFM), three-dimensional laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). LSCM and SEM results showed that ß-Ga2O3 is highly vulnerable to brittle fracture during MP. AFM revealed that an ultrasmooth and nondamaged surface with a low R a of approximately 0.18 nm could be obtained through CMP. XPS results indicated that a metamorphic layer, which mainly contains soluble gallium salt (Ga(OH)4 -), formed on the ß-Ga2O3 surface through a chemical reaction. A dendritic pattern appeared on the surface of ß-Ga2O3 after chemical etching. This phenomenon indicated that the chemical reaction on the ß-Ga2O3 surface occurred in a nonuniform and selective manner. The results of this study will aid the optimization of slurry preparation and CMP.

20.
Opt Express ; 25(1): 440-451, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28085838

RESUMEN

A tangencypoint method (TPM) is presented to derive the thickness and optical constants of chalcogenide thin films from their transmission spectra. It solves the problem of the abnormal value of thickness in the strong absorption region obtained by Swanepoel method. The accuracy of the thickness and refractive index is better than 0.5% by using this method. Moreover, comparing with Swanepoel method by using the same simulation and experimental data from the transmission spectrum, the accuracy of the thickness and refractive index obtained by the TPM is higher in the strong absorption region. Finally the dispersion and absorption coefficient of the chalcogenide films are obtained based on the experimental data of the transmission spectrum by using the TPM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...