Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Virulence ; 14(1): 2265108, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37941402

RESUMEN

The control of Ostrinia furnacalis, a major pest of maize in Xinjiang, is challenging owing to the occurrence of resistant individuals. Entomopathogenic fungi (EPF) are natural insect regulators used as substitutes for synthetic chemical insecticides. The fungus Aspergillus nomius is highly pathogenic to O. furnacalis; however, its virulence characteristics have not been identified. This study aimed to analyse the lethal efficacy, mode of infection on the cuticle, and extracellular enzyme activity of A. nomius against O. furnacalis. We found that the mortality and mycosis of O. furnacalis were dose-dependent when exposed to A. nomius and varied at different life stages. The egg-hatching and adult emergence rates decreased with an increase in conidial suspension. The highest mortality (83.33%, 7 d post-infection [DPI]) and mycosis (74.33%, 7 DPI) and the lowest mortality response (8.52 × 103 conidia mL-1) and median lethal time (4.91 d) occurred in the 3rd instar larvae of O. furnacalis. Scanning electron microscopy indicated that numerous conidia germination and infection structure formation may have contributed to the high pathogenicity of A. nomius against O. furnacalis. There were significant correlations between O. furnacalis mortality and the activities of extracellular protease, lipase, and chitinase of A. nomius. This study revealed the infection process of the highly pathogenic A. nomius against O. furnacalis, providing a theoretical basis and reference for strain improvement and field application of EPF.


Asunto(s)
Lepidópteros , Mariposas Nocturnas , Humanos , Animales , Lepidópteros/microbiología , Zea mays , Virulencia , Mariposas Nocturnas/fisiología , Aspergillus , Larva/fisiología
2.
J Appl Microbiol ; 133(5): 2979-2992, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35943823

RESUMEN

AIMS: This study aimed to isolate and identify entomopathogenic fungi (EPF) from fungus-infected Ostrinia furnacalis larvae, screen their bio-efficacy against O. furnacalis, and select the most suitable virulent native EPF for biocontrol agent development. METHODS AND RESULTS: The occurrence of EPF isolated from various maize production regions in Xinjiang was investigated. Of 13,864 O. furnacalis cadavers surveyed, 536 were selected, and of 136 fungal specimens collected, 14 species were identified. Four fungal isolates were highly pathogenic to O. furnacalis: Aspergillus sp., Lecanicillium attenuatum, Beauveria bassiana and Penicillium polonicum. The Aspergillus sp. was the most abundant (42.25% distribution frequency). Bioassay results revealed that it was as pathogenic as B. bassiana (positive control), with 96.58% lethality against O. furnacalis (LC50 : 1.40 × 104 conidia ml-1 , LT50 : 3.41 days). Through morphological examination and rDNA-benA and rDNA-CaM homogeneity analyses, the isolate was identified as Aspergillus nomius. CONCLUSIONS: Four EPF species were highly pathogenic, with A. nomius being the most prevalent in Xinjiang. A. nomius is a potential biocontrol agent. SIGNIFICANCE AND IMPACT OF STUDY: For sustainable prevention and control of O. furnacalis infestation, identifying biocontrol agents with high virulence against O. furnacalis is crucial. The findings of this study support the development of EPF-based biocontrol approaches.


Asunto(s)
Beauveria , Mariposas Nocturnas , Animales , Zea mays/genética , Larva/microbiología , Beauveria/genética , ADN Ribosómico
3.
J Insect Sci ; 21(2)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33844016

RESUMEN

Bemisia tabaci (Gennadius) cryptic complex has invaded Xinjiang, China, since 1998. The distribution of Mediterranean (MED) and Middle East-Asia Minor 1 (MEAM1) B. tabaci substrains has been gradually identified due to the development of molecular technology. In this study, the distribution of MED and MEAM1 in Xinjiang was determined by cleaved amplified polymorphic sequence (CAPs). Results showed that MED dominated in northern Xinjiang (84%), whereas MEAM1 was dominant in southern Xinjiang (72%). Five pairs of simple sequence repeat (SSR) primers were used to analyze the genetic diversity of B. tabaci among 36 geographic populations. The genetic diversity of MED and MEAM1was low and varied little among populations in Xinjiang (0.09 ± 0.14 and 0.09 ± 0.13, respectively). Based on ∆K statistic, 13 populations of MEAM1 could be classified into two subgroups at K = 2, whereas the 23 populations of MED could be classified into four subgroups at K = 4. However, Mantel t-test demonstrated no correlation between geographical and genetic distances among B. tabaci complex (R = 0.42, P = 1.00). Neighbor-joining and principal coordinate analysis showed that geographical isolation and interspecific differences were the main causes of the genetic variation. Gene flow predicted that MEAM1 was most likely introduced from Urumqi to the southern Xinjiang. Meanwhile, a large proportion of MED in Kashi region came from Changji and Yining. To block ongoing dispersal, strict detection and flower quarantine regulations need to be enforced.


Asunto(s)
Hemípteros/genética , Especies Introducidas , Distribución Animal , Animales , China , Asia Oriental , Flujo Génico , Genes de Insecto , Variación Genética , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA