Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 653, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110862

RESUMEN

BACKGROUND: Cotton, being extensively cultivated, holds immense economic significance as one of the most prominent crops globally. The SET (Su(var), E, and Trithorax) domain-containing protein is of significant importance in plant development, growth, and response to abiotic stress by modifying the lysine methylation status of histone. However, the comprehensive identification of SET domain genes (SDG) have not been conducted in upland cotton (Gossypium hirsutum L.). RESULTS: A total of 229 SDGs were identified in four Gossypium species, including G. arboretum, G. raimondii, G. hirsutum, and G. barbadense. These genes could distinctly be divided into eight groups. The analysis of gene structure and protein motif revealed a high degree of conservation among the SDGs within the same group. Collinearity analysis suggested that the SDGs of Gossypium species and most of the other selected plants were mainly expanded by dispersed duplication events and whole genome duplication (WGD) events. The allopolyploidization event also has a significant impact on the expansion of SDGs in tetraploid Gossypium species. Furthermore, the characteristics of these genes have been relatively conserved during the evolution. Cis-element analysis revealed that GhSDGs play a role in resistance to abiotic stresses and growth development. Furthermore, the qRT-PCR results have indicated the ability of GhSDGs to respond to salt stress. Co-expression analysis revealed that GhSDG51 might co-express with genes associated with salt stress. In addition, the silencing of GhSDG51 in cotton by the virus-induced gene silencing (VIGS) method suggested a potential positive regulatory role of GhSDG51 in salt stress. CONCLUSIONS: The results of this study comprehensively analyze the SDGs in cotton and provide a basis for understanding the biological role of SDGs in the stress resistance in upland cotton.


Asunto(s)
Genoma de Planta , Gossypium , Genoma de Planta/genética , Gossypium/genética , Familia de Multigenes , Dominios PR-SET , Estrés Fisiológico/genética , Estrés Salino/genética , Filogenia , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
2.
BMC Genomics ; 24(1): 467, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596513

RESUMEN

BACKGROUND: Phloem protein 2 (PP2) proteins play a vital role in the Phloem-based defense (PBD) and participate in many abiotic and biotic stress. However, research on PP2 proteins in cotton is still lacking. RESULTS: A total of 25, 23, 43, and 47 PP2 genes were comprehensively identified and characterized in G.arboretum, G.raimondii, G.barbadense, and G.hirsutum. The whole genome duplication (WGD) and allopolyploidization events play essential roles in the expansion of PP2 genes. The promoter regions of GhPP2 genes contain many cis-acting elements related to abiotic stress and the weighted gene co-expression network analysis (WGCNA) analysis displayed that GhPP2s could be related to salt stress. The qRT-PCR assays further confirmed that GhPP2-33 could be dramatically upregulated during the salt treatment. And the virus-induced gene silencing (VIGS) experiment proved that the silencing of GhPP2-33 could decrease salt tolerance. CONCLUSIONS: The results in this study not only offer new perspectives for understanding the evolution of PP2 genes in cotton but also further explore their function under salt stress.


Asunto(s)
Gossypium , Proteínas de Plantas , Tolerancia a la Sal , Gossypium/genética , Lectinas de Plantas , Estrés Salino , Tolerancia a la Sal/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362330

RESUMEN

Soil salinization conditions seriously restrict cotton yield and quality. Related studies have shown that the DUF4228 proteins are pivotal in plant resistance to abiotic stress. However, there has been no systematic identification and analysis of the DUF4228 gene family in cotton and their role in abiotic stress. In this study, a total of 308 DUF4228 genes were identified in four Gossypium species, which were divided into five subfamilies. Gene structure and protein motifs analysis showed that the GhDUF4228 proteins were conserved in each subfamily. In addition, whole genome duplication (WGD) events and allopolyploidization might play an essential role in the expansion of the DUF4228 genes. Besides, many stress-responsive (MYB, MYC) and hormone-responsive (ABA, MeJA) related cis-elements were detected in the promoters of the DUF4228 genes. The qRT-PCR results showed that GhDUF4228 genes might be involved in the response to abiotic stress. VIGS assays and the measurement of relative water content (RWC), Proline content, POD activity, and malondialdehyde (MDA) content indicated that GhDUF4228-67 might be a positive regulator of cotton response to salt stress. The results in this study systematically characterized the DUF4228s in Gossypium species and will provide helpful information to further research the role of DUF4228s in salt tolerance.


Asunto(s)
Gossypium , Tolerancia a la Sal , Gossypium/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes
4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293038

RESUMEN

Abiotic stress, such as drought and salinity stress, seriously inhibit the growth and development of plants. Therefore, it is vital to understand the drought and salinity resistance mechanisms to enable cotton to provide more production under drought and salt conditions. In this study, we identified 8806 and 9108 differentially expressed genes (DEGs) through a comprehensive analysis of transcriptomic data related to the PEG-induced osmotic and salt stress in cotton. By performing weighted gene co-expression network analysis (WGCNA), we identified four co-expression modules in PEG treatment and five co-expression modules in salinity stress, which included 346 and 324 predicted transcription factors (TFs) in these modules, respectively. Correspondingly, whole genome duplication (WGD) events mainly contribute to the expansion of those TFs. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analyses revealed those different modules were associated with stress resistance, including regulating macromolecule metabolic process, peptidase activity, transporter activity, lipid metabolic process, and responses to stimulus. Quantitative RT-PCR analysis was used to confirm the expression levels of 15 hub TFs in PEG6000 and salinity treatments. We found that the hub gene GhWRKY46 could alter salt and PEG-induced drought resistance in cotton through the virus-induced gene silencing (VIGS) method. Our results provide a preliminary framework for further investigation of the cotton response to salt and drought stress, which is significant to breeding salt- and drought-tolerant cotton varieties.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Estrés Fisiológico/genética , Estrés Salino/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Péptido Hidrolasas/metabolismo , Lípidos , Gossypium/genética , Gossypium/metabolismo
5.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562957

RESUMEN

As one of the most important factors in alternative splicing (AS) events, serine/arginine-rich (SR) proteins not only participate in the growth and development of plants but also play pivotal roles in abiotic stresses. However, the research about SR proteins in cotton is still lacking. In this study, we performed an extensive comparative analysis of SR proteins and determined their phylogeny in the plant lineage. A total of 169 SR family members were identified from four Gossypium species, and these genes could be divided into eight distinct subfamilies. The domain, motif distribution and gene structure of cotton SR proteins are conserved within each subfamily. The expansion of SR genes is mainly contributed by WGD and allopolyploidization events in cotton. The selection pressure analysis showed that all the paralogous gene pairs were under purifying selection pressure. Many cis-elements responding to abiotic stress and phytohormones were identified in the upstream sequences of the GhSR genes. Expression profiling suggested that some GhSR genes may involve in the pathways of plant resistance to abiotic stresses. The WGCNA analysis showed that GhSCL-8 co-expressed with many abiotic responding related genes in a salt-responding network. The Y2H assays showed that GhSCL-8 could interact with GhSRs in other subfamilies. The subcellular location analysis showed that GhSCL-8 is expressed in the nucleus. The further VIGS assays showed that the silencing of GhSCL-8 could decrease salt tolerance in cotton. These results expand our knowledge of the evolution of the SR gene family in plants, and they will also contribute to the elucidation of the biological functions of SR genes in the future.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Arginina/metabolismo , Genoma de Planta , Gossypium/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Serina/metabolismo , Estrés Fisiológico/genética
6.
Front Plant Sci ; 12: 684227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868097

RESUMEN

The membrane attack complex/perforin (MACPF) domain-containing proteins are involved in the various developmental processes and in responding to diverse abiotic stress. The function and regulatory network of the MACPF genes are rarely reported in Gossypium spp. We study the detailed identification and partial functional verification of the members of the MACPF family. Totally, 100 putative MACPF proteins containing complete MACPF domain were identified from the four cotton species. They were classified into three phylogenetic groups and underwent multifold pressure indicating that selection produced new functional differentiation. Cotton MACPF gene family members expanded mainly through the whole-genome duplication (WGD)/segmental followed by the dispersed. Expression and cis-acting elements analysis revealed that MACPFs play a role in resistance to abiotic stresses, and some selected GhMACPFs were able to respond to the PEG and cold stresses. Co-expression analysis showed that GhMACPFs might interact with valine-glutamine (VQ), WRKY, and Apetala 2 (AP2)/ethylene responsive factor (ERF) domain-containing genes under cold stress. In addition, silencing endogenous GhMACPF26 in cotton by the virus-induced gene silencing (VIGS) method indicated that GhMACPF26 negatively regulates cold tolerance. Our data provided a comprehensive phylogenetic evolutionary view of Gossypium MACPFs. The MACPFs may work together with multiple transcriptional factors and play roles in acclimation to abiotic stress, especially cold stress in cotton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...