Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 2): 134222, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074697

RESUMEN

In this work, carboxymethylated curdlan (CMCD) was utilized as a capping and stabilizing agent for the green synthesis of silver nanoparticles. Subsequently, quaternized curdlan (QCD) was introduced as the second capping layer through electrostatic attraction, leading to the preparation of double-capped silver nanoparticles (AgNPs@CQ). The successful synthesis of silver nanoparticles was characterized using UV-vis, FTIR, XRD, TEM, and DLS. AgNPs@CQ were incorporated into gelatin and a AgNPs@CQ/Gel composite hydrogel was obtained. The incorporation of AgNPs@CQ imparts excellent antibacterial properties to the composite hydrogel, thereby enhancing its antimicrobial efficacy. The presence of double-capping layers significantly retards the release rate of silver, contributing to prolonged antimicrobial activity. The MTT and live/dead fluorescence staining results demonstrate that the gelatin hydrogel incorporating double-capped AgNPs exhibits enhanced cell viability compared to the one incorporating single-capped AgNPs. Additionally, the composite hydrogel exhibits remarkable mechanical strength and adhesive performance. The AgNPs@CQ/Gel composite hydrogel demonstrates a cost-effective and facile preparation, showing significant potential in the field of dressings.


Asunto(s)
Antibacterianos , Gelatina , Hidrogeles , Nanopartículas del Metal , Plata , beta-Glucanos , Plata/química , beta-Glucanos/química , Gelatina/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Preparaciones de Acción Retardada , Pruebas de Sensibilidad Microbiana , Supervivencia Celular/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
2.
Front Nutr ; 11: 1325886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379540

RESUMEN

To develop food flavorings with a delicious taste and an anti-oxidation effect, in this study, the glucose Maillard reaction was used for hydrolysates of Urechis unicinctus. The various biological activities of Maillard reaction products (MRPs) and their antioxidant capacity were evaluated. The results showed that the unique fishy odor substances of seafood in MRPs were reduced, indicating that the Maillard reaction improved the flavor of the hydrolysate of Urechis unicinctus. Meanwhile, MRPs exhibited more competitive radical scavenging activities compared to the hydrolysate. Moreover, MRPs demonstrated a considerable potential to protect against 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress in a cell model in vitro and in a zebrafish model in vivo. Finally, a novel food flavoring was produced with MRPs as raw material, while the sensory qualities were deemed acceptable. In consequence, during industrial production, MRPs of Urechis unicinctus hydrolysate act as a high-quality raw material for functional flavorings and provide an effective way for the utilization of marine resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA