Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
1.
Cell Rep ; 43(6): 114349, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870009

RESUMEN

Heat shock transcription factors (HSFs) play a crucial role in heat stress tolerance in vegetative tissues. However, their involvement in reproductive tissues and their post-translational modifications are not well understood. In this study, we identify the E3 ligase XB3 ORTHOLOG 1 IN ARABIDOPSIS THALIANA (XBAT31) as a key player in the ubiquitination and degradation of HSFB2a/B2b. Our results show that the xbat31 mutant exhibits a higher percentage of unfertile siliques and decreased expression of HSPs in flowers under heat stress conditions compared to the wild type. Conversely, the hsfb2a hsfb2b double mutant displays improved reproductive thermotolerance. We find that XBAT31 interacts with HSFB2a/B2b and mediates their ubiquitination. Furthermore, HSFB2a/B2b ubiquitination is reduced in the xbat31-1 mutant, resulting in higher accumulation of HSFB2a/B2b in flowers under heat stress conditions. Overexpression of HSFB2a or HSFB2b leads to an increase in unfertile siliques under heat stress conditions. Thus, our results dissect the important role of the XBAT31-HSFB2a/B2b module in conferring reproductive thermotolerance in plants.

2.
J Radiat Res ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818645

RESUMEN

To investigate the levels of 131I activity in thyroid of workers at the place of radioiodine therapy and their main influential factors in China, 341 workers at 38 hospitals performing radioiodine therapy procedure in five provinces were recruited to be measured in 2021. A hand-held gamma spectrometer with NaI(Tl) probe was plastered to the thyroids and thighs of the subjects during the measurement, and each measurement time was 120 s. The internal exposure dose was calculated, and the committed effective dose was estimated. In 86 (25.22%) of the 341 examined workers, 131I thyroid activity was above minimum detectable activity (MDA, 26.6 Bq). The maximum activity was 4.9 × 103 Bq. The detection results above MDA were at 22 (57.89%) different hospitals. The detectable rate for private hospitals (4.8%) was significantly lower than that for public hospitals (26.6%), P < 0.05. The detectable rate for hospitals in provincial capital cities (15.4%) was significantly lower than in nonprovincial capital cities (41.7%), P < 0.001. The detectable rate for hospitals engaged in 131I therapy for thyroid cancer (31.2%) was significantly higher than only for hyperthyroidism (10.3%), P < 0.001. A total of 32 subjects' committed effective dose might exceed 1 mSv. Results indicated the 131I activity in the thyroid of workers at the place of radioiodine varied considerably in China, and mainly related to ownership, location and therapy program of the hospitals.

3.
J Dig Dis ; 25(3): 156-162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38628105

RESUMEN

Chronic liver disease has emerged as a significant global concern, with primary hepatocellular carcinoma (HCC) representing a critical consequence of this disease. However, early detection of HCC remains challenging in clinical practice. Recently, there has been a growing interest in applying endoscopic ultrasound (EUS) as a diagnostic tool for gastrointestinal diseases. Nevertheless, using EUS to diagnose and treat HCC is uncommon. In this review we described the diagnostic and therapeutic applications of EUS in primary HCC and evaluated its clinical significance. The diagnostic procedures primarily involve EUS-guided fine-needle biopsy or aspiration, assessment of metastatic lymph nodes and portal vein thrombosis, portal pressure monitoring, and portal vein blood collection. Treatment mainly includes EUS-guided tumor ablation, brachytherapy, injectable chemotherapy, and managing variceal hemorrhage related to portal hypertension.


Asunto(s)
Carcinoma Hepatocelular , Endosonografía , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Endosonografía/métodos , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico/métodos
4.
Dev Cell ; 59(11): 1363-1378.e4, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38579719

RESUMEN

The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.


Asunto(s)
Germinación , Oryza , Peroxisomas , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Germinación/fisiología , Peroxisomas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Coenzima A Ligasas/metabolismo , Ácidos Indolacéticos/metabolismo , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Cinamatos/metabolismo
5.
Nat Commun ; 15(1): 3017, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589414

RESUMEN

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

6.
World J Clin Oncol ; 15(3): 419-433, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38576593

RESUMEN

BACKGROUND: Accurate preoperative prediction of lymph node metastasis (LNM) in esophageal cancer (EC) patients is of crucial clinical significance for treatment planning and prognosis. AIM: To develop a clinical radiomics nomogram that can predict the preoperative lymph node (LN) status in EC patients. METHODS: A total of 32 EC patients confirmed by clinical pathology (who underwent surgical treatment) were included. Real-time fluorescent quantitative reverse transcription-polymerase chain reaction was used to detect the expression of B7-H3 mRNA in EC tissue obtained during preoperative gastroscopy, and its correlation with LNM was analyzed. Radiomics features were extracted from multi-modal magnetic resonance imaging of EC using Pyradiomics in Python. Feature extraction, data dimensionality reduction, and feature selection were performed using XGBoost model and leave-one-out cross-validation. Multivariable logistic regression analysis was used to establish the prediction model, which included radiomics features, LN status from computed tomography (CT) reports, and B7-H3 mRNA expression, represented by a radiomics nomogram. Receiver operating characteristic area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate the predictive performance and clinical application value of the model. RESULTS: The relative expression of B7-H3 mRNA in EC patients with LNM was higher than in those without metastasis, and the difference was statistically significant (P < 0.05). The AUC value in the receiver operating characteristic (ROC) curve was 0.718 (95%CI: 0.528-0.907), with a sensitivity of 0.733 and specificity of 0.706, indicating good diagnostic performance. The individualized clinical prediction nomogram included radiomics features, LN status from CT reports, and B7-H3 mRNA expression. The ROC curve demonstrated good diagnostic value, with an AUC value of 0.765 (95%CI: 0.598-0.931), sensitivity of 0.800, and specificity of 0.706. DCA indicated the practical value of the radiomics nomogram in clinical practice. CONCLUSION: This study developed a radiomics nomogram that includes radiomics features, LN status from CT reports, and B7-H3 mRNA expression, enabling convenient preoperative individualized prediction of LNM in EC patients.

7.
Scand J Trauma Resusc Emerg Med ; 32(1): 18, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454455

RESUMEN

OBJECTIVE: Tranexamic acid (TXA) demonstrates therapeutic efficacy in the management of traumatic brain injury (TBI). The objective of this systematic review and meta-analysis was to evaluate the safety and effectiveness of TXA in patients with TBI. METHODS: The databases, namely PubMed, Embase, Web of Science, and Cochrane Library databases, were systematically searched to retrieve randomized controlled trials (RCTs) investigating the efficacy of TXA for TBI from January 2000 to November 2023. RESULTS: The present meta-analysis incorporates ten RCTs. Compared to the placebo group, administration of TXA in patients with TBI resulted in a significant reduction in mortality (P = 0.05), hemorrhage growth (P = 0.03), and volume of hemorrhage growth (P = 0.003). However, no significant impact was observed on neurosurgery outcomes (P = 0.25), seizure occurrence (P = 0.78), or pulmonary embolism incidence (P = 0.52). CONCLUSION: The administration of TXA is significantly associated with reduced mortality and hemorrhage growth in patients suffering from TBI, while the need of neurosurgery, seizures, and incidence of pulmonary embolism remains comparable to that observed with placebo.


Asunto(s)
Antifibrinolíticos , Lesiones Traumáticas del Encéfalo , Embolia Pulmonar , Ácido Tranexámico , Humanos , Ácido Tranexámico/uso terapéutico , Antifibrinolíticos/uso terapéutico , Hemorragia/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Embolia Pulmonar/complicaciones , Embolia Pulmonar/tratamiento farmacológico
8.
Chin Med Sci J ; 39(1): 54-68, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38426411

RESUMEN

Objective Dexmedetomidine (Dex) is a highly selective α2 adrenoceptor agonist that reduces blood pressure and heart rate. However, its ability to provide stable hemodynamics and a clinically significant reduction in blood loss in spine surgery is still a matter of debate. This study aimed to investigate the effects of Dex on intraoperative hemodynamics and blood loss in patients undergoing spine surgery.Methods The Web of Science, MEDLINE, EMBASE, and the Cochrane Library were searched up to February 2023 for randomized controlled trials (RCTs) including patients undergoing spine surgeries under general anaesthesia and comparing Dex and saline. A fixed- or random-effect model was used depending on heterogeneity.Results Twenty-one RCTs, including 1388 patients, were identified. Dex added the overall risk of intraoperative hypotension (odds ratio [OR]: 2.11; 95% confidence interval [CI]: 1.24 - 3.58; P=0.006) and bradycardia (OR: 2.48; 95%CI: 1.57 - 3.93; P=0.0001). The use of a loading dose of Dex led to significantly increased risks of intraoperative hypotension (OR: 2.00; 95%CI: 1.06 - 3.79; P=0.03) and bradycardia (OR: 2.28; 95%CI: 1.42 - 3.66; P=0.0007). For patients receiving total intravenous anesthesia, there was an increased risk of hypotension (OR: 2.90; 95%CI: 1.24 - 6.82; P=0.01) and bradycardia (OR: 2.66; 95%CI: 1.53 - 4.61; P=0. 0005). For patients in the inhalation anesthesia group, only an increased risk of bradycardia (OR: 4.95; 95%CI: 1.41 - 17.37; P=0.01) was observed. No significant increase in the risk of hypotension and bradycardia was found in the combined intravenous-inhalation anesthesia group. The incidence of severe hypotension (OR: 2.57; 95%CI: 1.05 - 6.32; P=0.04), but not mild hypotension, was increased. Both mild (OR: 2.55; 95%CI: 1.06 - 6.15; P=0.04) and severe (OR: 2.45; 95%CI: 1.43 - 4.20; P=0.001) bradycardia were associated with a higher risk. The overall analyses did not reveal significant reduction in intraoperative blood loss. However, a significant decrease in blood loss was observed in total inhalation anesthesia subgroup (mean difference [MD]: -82.97; 95%CI: -109.04 - -56.90; P<0.001).Conclusions Dex increases the risks of intraoperative hypotension and bradycardia in major spine surgery. The administration of a loading dose of Dex and the utilization of various anesthesia maintenance methods may potentially impact hemodynamic stability and intraoperative blood loss.


Asunto(s)
Dexmedetomidina , Hipotensión , Humanos , Dexmedetomidina/efectos adversos , Bradicardia/inducido químicamente , Bradicardia/tratamiento farmacológico , Pérdida de Sangre Quirúrgica , Hemodinámica , Anestesia General , Hipotensión/inducido químicamente , Hipotensión/epidemiología , Hipotensión/tratamiento farmacológico
9.
Plant Commun ; : 100880, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486455

RESUMEN

Arabidopsis plants adapt to warm temperatures by promoting hypocotyl growth primarily through the basic helix-loop-helix transcription factor PIF4 and its downstream genes involved in auxin responses, which enhance cell division. In the current study, we discovered that cell wall-related calcium-binding protein 2 (CCaP2) and its paralogs CCaP1 and CCaP3 function as positive regulators of thermo-responsive hypocotyl growth by promoting cell elongation in Arabidopsis. Interestingly, mutations in CCaP1/CCaP2/CCaP3 do not affect the expression of PIF4-regulated classic downstream genes. However, they do noticeably reduce the expression of xyloglucan endotransglucosylase/hydrolase genes, which are involved in cell wall modification. We also found that CCaP1/CCaP2/CCaP3 are predominantly localized to the plasma membrane, where they interact with the plasma membrane H+-ATPases AHA1/AHA2. Furthermore, we observed that vanadate-sensitive H+-ATPase activity and cell wall pectin and hemicellulose contents are significantly increased in wild-type plants grown at warm temperatures compared with those grown at normal growth temperatures, but these changes are not evident in the ccap1-1 ccap2-1 ccap3-1 triple mutant. Overall, our findings demonstrate that CCaP1/CCaP2/CCaP3 play an important role in controlling thermo-responsive hypocotyl growth and provide new insights into the alternative pathway regulating hypocotyl growth at warm temperatures through cell wall modification mediated by CCaP1/CCaP2/CCaP3.

10.
Artif Cells Nanomed Biotechnol ; 52(1): 156-174, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38423139

RESUMEN

Osteoarthritis (OA) is a degenerative disease closely associated with Anoikis. The objective of this work was to discover novel transcriptome-based anoikis-related biomarkers and pathways for OA progression.The microarray datasets GSE114007 and GSE89408 were downloaded using the Gene Expression Omnibus (GEO) database. A collection of genes linked to anoikis has been collected from the GeneCards database. The intersection genes of the differential anoikis-related genes (DEARGs) were identified using a Venn diagram. Infiltration analyses were used to identify and study the differentially expressed genes (DEGs). Anoikis clustering was used to identify the DEGs. By using gene clustering, two OA subgroups were formed using the DEGs. GSE152805 was used to analyse OA cartilage on a single cell level. 10 DEARGs were identified by lasso analysis, and two Anoikis subtypes were constructed. MEgreen module was found in disease WGCNA analysis, and MEturquoise module was most significant in gene clusters WGCNA. The XGB, SVM, RF, and GLM models identified five hub genes (CDH2, SHCBP1, SCG2, C10orf10, P FKFB3), and the diagnostic model built using these five genes performed well in the training and validation cohorts. analysing single-cell RNA sequencing data from GSE152805, including 25,852 cells of 6 OA cartilage.


Asunto(s)
Anoicis , Osteoartritis , Humanos , Anoicis/genética , Aprendizaje Automático , Cadherinas , Osteoartritis/diagnóstico , Osteoartritis/genética , Análisis de Secuencia de ARN , Proteínas Adaptadoras de la Señalización Shc
11.
Plant Cell Environ ; 47(5): 1852-1864, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38334305

RESUMEN

Zinc (Zn) deficiency not only impairs plant growth and development but also has negative effects on human health. Rice (Oryza Sativa L.) is a staple food for over half of the global population, yet the regulation of Zn deficiency response in rice remains largely unknown. In this study, we provide evidence that two F-group bZIP transcription factors, OsbZIP48/50, play a crucial role in Zn deficiency response. Mutations in OsbZIP48/50 result in impaired growth and reduced Zn/Fe/Cu content under Zn deficiency conditions. The N-terminus of OsbZIP48/OsbZIP50 contains two Zn sensor motifs (ZSMs), deletion or mutation of these ZSMs leads to increased nuclear localization. Both OsbZIP48 and OsbZIP50 exhibit transcriptional activation activity, and the upregulation of 1117 genes involved in metal uptake and other processes by Zn deficiency is diminished in the OsbZIP48/50 double mutant. Both OsbZIP48 and OsbZIP50 bind to the promoter of OsZIP10 and activate the ZDRE cis-element. Amino acid substitution mutation of the ZSM domain of OsbZIP48 in OsbZIP50 mutant background increases the content of Zn/Fe/Cu in brown rice seeds and leaves. Therefore, this study demonstrates that OsbZIP48/50 play a crucial role in regulating metal homoeostasis and identifies their downstream genes involved in the Zn deficiency response in rice.


Asunto(s)
Oryza , Zinc , Humanos , Zinc/metabolismo , Oryza/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Metales/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas
13.
Cell Res ; 34(4): 281-294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200278

RESUMEN

Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aluminio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Iones , Suelo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo
14.
Seizure ; 116: 37-44, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36941137

RESUMEN

PURPOSE: The FAT1 gene encodes FAT atypical cadherin 1, which is essential for foetal development, including brain development. This study aimed to investigate the relationship between FAT1 variants and epilepsy. METHODS: Trio-based whole-exome sequencing was performed on a cohort of 313 patients with epilepsy. Additional cases with FAT1 variants were collected from the China Epilepsy Gene V.1.0 Matching Platform. RESULTS: Four pairs of compound heterozygous missense FAT1 variants were identified in four unrelated patients with partial (focal) epilepsy and/or febrile seizures, but without intellectual disability/developmental abnormalities. These variants presented no/very low frequencies in the gnomAD database, and the aggregate frequencies in this cohort were significantly higher than those in controls. Two additional compound heterozygous missense variants were identified in two unrelated cases using the gene-matching platform. All patients experienced infrequent (yearly/monthly) complex partial seizures or secondary generalised tonic-clonic seizures. They responded well toantiseizure medication, but seizures relapsed in three cases when antiseizure medication were decreased or withdrawn after being seizure-free for three to six years, which correlated with the expression stage of FAT1. Genotype-phenotype analysis showed that epilepsy-associated FAT1 variants were missense, whereas non-epilepsy-associated variants were mainly truncated. The relationship between FAT1 and epilepsy was evaluated to be "Strong" by the Clinical Validity Framework of ClinGen. CONCLUSIONS: FAT1 is a potential causative gene of partial epilepsy and febrile seizures. Gene expression stage was suggested to be one of the considerations in determining the duration ofantiseizure medication. Genotype-phenotype correlation helps to explain the mechanisms underlying phenotypic variation.


Asunto(s)
Epilepsias Parciales , Epilepsia , Convulsiones Febriles , Humanos , Anticonvulsivantes/uso terapéutico , Convulsiones Febriles/genética , Convulsiones Febriles/tratamiento farmacológico , Epilepsias Parciales/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Recurrencia , Expresión Génica , Cadherinas/genética
15.
Sci Bull (Beijing) ; 69(1): 59-71, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38044192

RESUMEN

Rice (Oryza sativa L.) production is threatened by global warming associated with extreme high temperatures, and rice heat sensitivity is differed when stress occurs between daytime and nighttime. However, the underlying molecular mechanism are largely unknown. We show here that two glycine-rich RNA binding proteins, OsGRP3 and OsGRP162, are required for thermotolerance in rice, especially at nighttime. The rhythmic expression of OsGRP3/OsGRP162 peaks at midnight, and at these coincident times, is increased by heat stress. This is largely dependent on the evening complex component OsELF3-2. We next found that the double mutant of OsGRP3/OsGRP162 is strikingly more sensitive to heat stress in terms of survival rate and seed setting rate when comparing to the wild-type plants. Interestingly, the defect in thermotolerance is more evident when heat stress occurred in nighttime than that in daytime. Upon heat stress, the double mutant of OsGRP3/OsGRP162 displays globally reduced expression of heat-stress responsive genes, and increases of mRNA alternative splicing dominated by exon-skipping. This study thus reveals the important role of OsGRP3/OsGRP162 in thermotolerance in rice, and unravels the mechanism on how OsGRP3/OsGRP162 regulate thermotolerance in a diurnal manner.


Asunto(s)
Oryza , Termotolerancia , Termotolerancia/genética , Oryza/genética , Empalme Alternativo/genética , Proteínas de Plantas/genética , Proteínas de Unión al ARN/genética , Glicina/genética
16.
J Integr Plant Biol ; 66(1): 54-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141041

RESUMEN

Plants are highly susceptible to abiotic stresses, particularly heat stress during the reproductive stage. However, the specific molecular mechanisms underlying this sensitivity remain largely unknown. In the current study, we demonstrate that the Nuclear Transcription Factor, X-box Binding Protein 1-Like 1 (NFXL1), directly regulates the expression of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2A (DREB2A), which is crucial for reproductive thermotolerance in Arabidopsis. NFXL1 is upregulated by heat stress, and its mutation leads to a reduction in silique length (seed number) under heat stress conditions. RNA-Seq analysis reveals that NFXL1 has a global impact on the expression of heat stress responsive genes, including DREB2A, Heat Shock Factor A3 (HSFA3) and Heat Shock Protein 17.6 (HSP17.6) in flower buds. Interestingly, NFXL1 is enriched in the promoter region of DREB2A, but not of either HSFA3 or HSP17.6. Further experiments using electrophoretic mobility shift assay have confirmed that NFXL1 directly binds to the DNA fragment derived from the DREB2A promoter. Moreover, effector-reporter assays have shown that NFXL1 activates the DREB2A promoter. The DREB2A mutants are also heat stress sensitive at the reproductive stage, and DEREB2A is epistatic to NFXL1 in regulating thermotolerance in flower buds. It is known that HSFA3, a direct target of DREB2A, regulates the expression of heat shock proteins genes under heat stress conditions. Thus, our findings establish NFXL1 as a critical upstream regulator of DREB2A in the transcriptional cassette responsible for heat stress responses required for reproductive thermotolerance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Termotolerancia , Arabidopsis/metabolismo , Termotolerancia/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Respuesta al Choque Térmico/genética , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/metabolismo
17.
Cell Mol Life Sci ; 80(12): 347, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37943391

RESUMEN

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Ratones , Nefropatías Diabéticas/genética , Homeostasis , Mitocondrias , Fibrosis
18.
Nat Commun ; 14(1): 6142, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798263

RESUMEN

Electrocatalytic CO2 reduction into value-added multicarbon products offers a means to close the anthropogenic carbon cycle using renewable electricity. However, the unsatisfactory catalytic selectivity for multicarbon products severely hinders the practical application of this technology. In this paper, we report a cascade AgCu single-atom and nanoparticle electrocatalyst, in which Ag nanoparticles produce CO and AgCu single-atom alloys promote C-C coupling kinetics. As a result, a Faradaic efficiency (FE) of 94 ± 4% toward multicarbon products is achieved with the as-prepared AgCu single-atom and nanoparticle catalyst under ~720 mA cm-2 working current density at -0.65 V in a flow cell with alkaline electrolyte. Density functional theory calculations further demonstrate that the high multicarbon product selectivity results from cooperation between AgCu single-atom alloys and Ag nanoparticles, wherein the Ag single-atom doping of Cu nanoparticles increases the adsorption energy of *CO on Cu sites due to the asymmetric bonding of the Cu atom to the adjacent Ag atom with a compressive strain.

19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1257-1262, 2023.
Artículo en Chino | MEDLINE | ID: mdl-37846669

RESUMEN

OBJECTIVE: To investigate the effect of homoharringtonine (HHT) on CEBPA protein and explore the mechanism of HHT in the treatment of acute myeloid leukemia (AML) with double CEBPA mutations. METHODS: The K562 cell line expressing CEBPA p30 (K562 CEBPA p30) was established. Western blot was used to determine the changes of the expression of CEBPA protein in K562 CEBPA p30, U937 and MOLM-13 cell lines before and after treatments with HHT, daunorubicin (DNR) or cytarabine (Ara-C). The effects of protease inhibitors and protein synthesis inhibitors on the expression of CEBPA protein were also determined. RNA-seq was used to analyze the difference of gene expressions and pathway enrichments between HHT group and DNR group. RESULTS: Both the endogenous CEBPA protein in U937 and MOLM-13 cell lines and the exogenous CEBPA protein in K562 CEBPA p30 were decreased by HHT (P<0.05) while were not by DNR or Ara-C. Proteasome inhibitors can increase the expression of CEBPA protein (P<0.05) while protein synthesis inhibitors can decrease the expression of CEBPA protein (P<0.05). The ribosome biogenesis related pathways in K562 CEBPA p30 were upregulated in HHT group while were not in DNR group. CONCLUSION: HHT can inhibit the synthesis of CEBPA and reduce the expression of CEBPA protein and this may be the mechanism of HHT in the treatment of CEBPA-double-mutant AML.

20.
Stress Biol ; 3(1): 19, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676358

RESUMEN

High temperature stress poses significant adverse effects on crop yield and quality. Yet the molecular mechanisms underlying heat stress tolerance in plants/crops, especially regarding the organellar remodeling and homeostasis, are largely unknown. In a recent study, Zhou et al. reported that autophagy-related 8 (ATG8), a famous regulator involved in autophagy, plays a new role in Golgi restoration upon heat stress. Golgi apparatus is vacuolated following short-term acute heat stress, and ATG8 is translocated to the dilated Golgi membrane and interacts with CLATHRIN LIGHT CHAIN 2 (CLC2) to facilitate Golgi restoration, which is dependent on the ATG conjugation system, but not of the upstream autophagic initiators. These exciting findings broaden the fundamental role of ATG8, and elucidate the organelle-level restoration mechanism of Golgi upon heat stress in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...