Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Protein Cell ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38482631

RESUMEN

Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation at specific CpG sites. However, available DNA methylation (DNAm) age predictors are based on datasets with limited ethnic representation. Moreover, a systematic comparison between DNAm data and other omics datasets has not yet been performed. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation (DNAm) aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing basis for evaluating aging intervention strategies.

2.
Nucleic Acids Res ; 52(D1): D909-D918, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37870433

RESUMEN

Diverse individuals age at different rates and display variable susceptibilities to tissue aging, functional decline and aging-related diseases. Centenarians, exemplifying extreme longevity, serve as models for healthy aging. The field of human aging and longevity research is rapidly advancing, garnering significant attention and accumulating substantial data in recent years. Omics technologies, encompassing phenomics, genomics, transcriptomics, proteomics, metabolomics and microbiomics, have provided multidimensional insights and revolutionized cohort-based investigations into human aging and longevity. Accumulated data, covering diverse cells, tissues and cohorts across the lifespan necessitates the establishment of an open and integrated database. Addressing this, we established the Human Aging and Longevity Landscape (HALL), a comprehensive multi-omics repository encompassing a diverse spectrum of human cohorts, spanning from young adults to centenarians. The core objective of HALL is to foster healthy aging by offering an extensive repository of information on biomarkers that gauge the trajectory of human aging. Moreover, the database facilitates the development of diagnostic tools for aging-related conditions and empowers targeted interventions to enhance longevity. HALL is publicly available at https://ngdc.cncb.ac.cn/hall/index.


Asunto(s)
Envejecimiento , Bases de Datos Factuales , Longevidad , Multiómica , Anciano de 80 o más Años , Humanos , Adulto Joven , Envejecimiento/genética , Biomarcadores , Susceptibilidad a Enfermedades , Genómica , Longevidad/genética
3.
Environ Sci Pollut Res Int ; 29(50): 75597-75608, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35661306

RESUMEN

Advanced oxidation processes (AOPs) are efficient methods for water purification. However, there are few studies on using peroxymonosulfate (PMS) to remove pollutants directly. In this study, about 76% of methylene blue (MB) was removed by PMS directly within 180 min through a non-radical pathway, verified by scavenging tests, electron paramagnetic resonance and kinetic calculations. Additionally, the effects of PMS dosage, MB concentration, temperature, initial pH and competitive anions were determined. High PMS dosage, temperature and pH promoted MB degradation (from 76 to 98%) while MB concentration showed no effect on MB removal. Besides, MB degradation followed pseudo-first-order kinetic with rate constants of 0.0082 to 0.3912 min-1. The second-order rate constant for PMS reaction with MB was 0.08 M-1 s-1 at pH 3-6, but increased dramatically to 4.68 M-1 s-1 at pH 10.50. Chlorine could be catalysed by PMS at high concentration Cl- and degradation efficiency reached 98% within 90 min. High concentration of bicarbonate accelerated MB removal due to the high pH value while humic acid showed a marginal effect on MB degradation. Furthermore, TOC removal rate of MB in the presence of chloride reached 45%, whereas PMS alone caused almost no mineralisation. This study provides new insights into pollutant removal and an additional strategy for water purification.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Bicarbonatos , Cloruros , Cloro , Sustancias Húmicas , Cinética , Oxidación-Reducción , Peróxidos , Contaminantes Químicos del Agua/análisis
4.
Eur J Med Chem ; 227: 113893, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34656899

RESUMEN

The equilibrium between histone acetylation and deacetylation plays an important role in cancer initiation and progression. The histone deacetylases (HDACs) are a class of key regulators of gene expression that enzymatically remove an acetyl moiety from acetylated lysine ε-amino groups on histone tails. Therefore, HDAC inhibitors have recently emerged as a promising strategy for cancer therapy and several pan-HDAC inhibitors have globally been approved for clinical use. In the present study, we designed and synthesized a series of substituted indole-based hydroxamic acid derivatives that exhibited potent anti-proliferative activities in various tumor cell lines. Among the compounds tested, compound 4o, was found to be among the most potent in the inhibition of HDAC1 (half maximal inhibitory concentration, IC50 = 1.16 nM) and HDAC6 (IC50 = 2.30 nM). It also exhibited excellent in vitro anti-tumor proliferation activity. Additionally, compound 4o effectively increased the acetylation of histone H3 in a dose-dependent manner and inhibited cell proliferation by inducing cell cycle arrest and apoptosis. Moreover, compound 4o remarkably blocked colony formation in HCT116 cancer cells. Based on its favorable in vitro profile, compound 4o was further evaluated in an HCT116 xenograft mouse model, in which it demonstrated better in vivo efficacy than the clinically used HDAC inhibitor, suberanilohydroxamic acid. Interestingly, compound 4k was found to have a preference for the inhibition of HDAC6, with IC50 values of 115.20 and 5.29 nM against HDAC1 and HDAC6, respectively.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Indoles/química , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Relación Estructura-Actividad , Células Tumorales Cultivadas
5.
J Med Chem ; 64(1): 385-403, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33382613

RESUMEN

Synthetic cannabinoids, as exemplified by SDB-001 (1), bind to both CB1 and CB2 receptors and exert cannabimimetic effects similar to (-)-trans-Δ9-tetrahydrocannabinol, the main psychoactive component present in the cannabis plant. As CB1 receptor ligands were found to have severe adverse psychiatric effects, increased attention was turned to exploiting the potential therapeutic value of the CB2 receptor. In our efforts to discover novel and selective CB2 receptor agonists, 1 was selected as a starting point for hit molecule identification and a class of 1H-pyrazole-3-carboxamide derivatives were thus designed, synthesized, and biologically evaluated. Systematic structure-activity relationship investigations resulted in the identification of the most promising compound 66 as a selective CB2 receptor agonist with favorable pharmacokinetic profiles. Especially, 66 treatment significantly attenuated dermal inflammation and fibrosis in a bleomycin-induced mouse model of systemic sclerosis, supporting that CB2 receptor agonists might serve as potential therapeutics for treating systemic sclerosis.


Asunto(s)
Drogas de Diseño/química , Descubrimiento de Drogas , Receptor Cannabinoide CB2/agonistas , Esclerodermia Sistémica/tratamiento farmacológico , Drogas de Diseño/farmacocinética , Humanos , Relación Estructura-Actividad
6.
J Exp Bot ; 70(3): 1033-1047, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30462256

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) derived from invading pathogens by plant pattern recognition receptors (PRRs) initiates a subset of defense responses known as pattern-triggered immunity (PTI). Transcription factors (TFs) orchestrate the onset of PTI through complex signaling networks. Here, we characterized the function of ERF19, a member of the Arabidopsis thaliana ethylene response factor (ERF) family. ERF19 was found to act as a negative regulator of PTI against Botrytis cinerea and Pseudomonas syringae. Notably, overexpression of ERF19 increased plant susceptibility to these pathogens and repressed MAMP-induced PTI outputs. In contrast, expression of the chimeric dominant repressor ERF19-SRDX boosted PTI activation, conferred increased resistance to the fungus B. cinerea, and enhanced elf18-triggered immunity against bacteria. Consistent with a negative role for ERF19 in PTI, MAMP-mediated growth inhibition was weakened or augmented in lines overexpressing ERF19 or expressing ERF19-SRDX, respectively. Using biochemical and genetic approaches, we show that the transcriptional co-repressor Novel INteractor of JAZ (NINJA) associates with and represses the function of ERF19. Our work reveals ERF19 as a novel player in the mitigation of PTI, and highlights a potential role for NINJA in fine-tuning ERF19-mediated regulation of Arabidopsis innate immunity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiología , Proteínas de Unión al ADN/metabolismo , Pseudomonas syringae/fisiología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
7.
Eur J Med Chem ; 158: 123-133, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30212763

RESUMEN

GPR40, also known as free fatty acid receptor 1 (FFAR1), is a member of G protein-coupled receptors (GPCR) family and has emerged as an attractive target for the treatment of type 2 diabetes mellitus. So far, most of the synthetic GPR40 agonists, including several drug candidates discontinued in clinical trials, were derived from the phenylpropionic acid scaffold. For discovering novel GPR40 agonists with diverse chemical structures, a series of phenylpropiolic acid derivatives were designed, synthesized, and evaluated under a battery of bioassays. Compound 9, the most potent compound in this series, exhibited submicromolar agonist activity and similar agonistic efficacy compared to that of TAK-875. In addition, compound 9 was able to dose-dependently amplify glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cell line MIN6, which could be reversed by a selective GPR40 antagonist GW1100. In addition, compound 9 was found to have potent glucose-lowering effects during an oral glucose tolerance test in normal C57BL/6 mice.


Asunto(s)
Glucosa/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Insulina/metabolismo , Fenilpropionatos/química , Fenilpropionatos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Línea Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diseño de Fármacos , Prueba de Tolerancia a la Glucosa , Células HEK293 , Humanos , Hipoglucemiantes/síntesis química , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Fenilpropionatos/síntesis química , Receptores Acoplados a Proteínas G/metabolismo
8.
J Med Chem ; 57(22): 9357-69, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25360834

RESUMEN

Histone deacetylases (HDACs) are one of the most promising drug targets for cancer therapy, and since more than 90% of all cancer-related deaths are associated with tumor metastasis, developing strategies to inhibit tumor metastasis while retaining anti-tumor growth activity are of great interest. Herein we demonstrated the design and identification of a series of novel hydroxamate-based HDAC inhibitors bearing potent activities against tumor growth and metastasis. Optimization of the initial hit resulted in the discovery of new HDAC inhibitors through studying the structure-activity relationship. Among them, compound 11b, one of the most potent leads, exhibited nanomolar IC50 values toward inhibition of class I and IIb HDACs as well as sub-micromolar activity against proliferation and migration of breast cancer cells in vitro. More importantly, it also significantly suppressed tumor growth in a breast tumor xenograft mouse model and dose-dependently blocked in vivo tumor metastasis in a mouse pulmonary metastasis model.


Asunto(s)
Amidas/química , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/química , Neoplasias/tratamiento farmacológico , Acetilación , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Ácidos Hidroxámicos/química , Concentración 50 Inhibidora , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...