Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(6): 10119-10125, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299422

RESUMEN

An investigation of electrical and optical properties of InGaN micro-scale light-emitting diodes (micro-LEDs) emitting at ∼530 nm is carried out, with sizes of 80, 150, and 200 µm. The ITO as a current spreading layer (CSL) provides excellent device performance. Over 10% external quantum efficiency (EQE) and wall-plug efficiency (WPE), and ultra-high brightness (> 10M nits) green micro-LEDs are realized. In addition, it is observed that better current spreading in smaller devices results in higher EQE and brightness. Superior green micro-LEDs can provide an essential guarantee for a variety of applications.

2.
Opt Express ; 29(16): 26255-26264, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614935

RESUMEN

The role of a superlattice distributed Bragg reflector (SL DBR) as the p-type electron blocking layer (EBL) in a GaN micro-light-emitting diode (micro-LED) is numerically investigated to improve wall-plug efficiency (WPE). The DBR consists of AlGaN/GaN superlattice (high refractive index layer) and GaN (low refractive index layer). It is observed that the reflectivity of the p-region and light extraction efficiency (LEE) increase with the number of DBR pairs. The AlGaN/GaN superlattice EBL is well known to reduce the polarization effect and to promote hole injection. Thus, the superlattice DBR structure shows a balanced carrier injection and results in a higher internal quantum efficiency (IQE). In addition, due to the high refractive-index layer replaced by the superlattice, the conductive DBR results in a lower operation voltage. As a result, WPE is improved by 22.9% compared to the identical device with the incorporation of a conventional p-type EBL.

3.
Sci Rep ; 11(1): 11088, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045509

RESUMEN

Gallium Nitride (GaN) remarkably shows high electron mobility, wide energy band gap, biocompatibility, and chemical stability. Wurtzite structure makes topmost Gallium atoms electropositive, hence high ligand binding ability especially to anions, making it usable as humidity sensor due to water self-ionization phenomenon. In this work, thin-film GaN based humidity sensor is fabricated through pulse modulated DC magnetron sputtering. Interdigitated electrodes (IDEs) with 100 µm width and spacing were inkjet printed on top of GaN sensing layer to further enhance sensor sensitivity. Impedance, capacitance, and current response were recorded for humidity and bio-sensing applications. The sensor shows approximate linear impedance response between 0 and 100% humidity range, the sensitivity of 8.53 nF/RH% and 79 kΩ/RH% for capacitance and impedance, and fast response (Tres) and recovery (Trec) time of 3.5 s and 9 s, respectively. The sensor shows little hysteresis of < 3.53% with stable and wide variations for accurate measurements. Especially, it demonstrates temperature invariance for thermal stability. Experimental results demonstrate fabricated sensor effectively evaluates plant transpiration cycle through water level monitoring by direct attachment onto leaves without causing any damage as well as freshness level of meat loaf. These properties of the proposed sensor make it a suitable candidate for future electronics providing a low-cost platform for real time monitoring applications.

4.
Light Sci Appl ; 9: 83, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411368

RESUMEN

Micro-light-emitting diodes (µ-LEDs) are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications, such as mobile phones, wearable watches, virtual/augmented reality, micro-projectors and ultrahigh-definition TVs. However, as the LED chip size shrinks to below 20 µm, conventional phosphor colour conversion cannot present sufficient luminance and yield to support high-resolution displays due to the low absorption cross-section. The emergence of quantum dot (QD) materials is expected to fill this gap due to their remarkable photoluminescence, narrow bandwidth emission, colour tuneability, high quantum yield and nanoscale size, providing a powerful full-colour solution for µ-LED displays. Here, we comprehensively review the latest progress concerning the implementation of µ-LEDs and QDs in display technology, including µ-LED design and fabrication, large-scale µ-LED transfer and QD full-colour strategy. Outlooks on QD stability, patterning and deposition and challenges of µ-LED displays are also provided. Finally, we discuss the advanced applications of QD-based µ-LED displays, showing the bright future of this technology.

5.
Sci Rep ; 6: 20218, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853933

RESUMEN

The photoelectrodes based on III-nitride semiconductors with high energy conversion efficiency especially for those self-driven ones are greatly desirable for hydrogen generation. In this study, highly ordered InGaN/GaN multiple-quantum-well nanorod-based photoelectrodes have been fabricated by a soft UV-curing nano-imprint lithography and a top-down etching technique, which improve the incident photon conversion efficiency (IPCE) from 16% (planar structure) to 42% (@ wavelength = 400 nm). More significantly, the turn-on voltage is reduced low to -0.6 V, which indicates the possibility of achieving self-driven. Furthermore, SiO2/Si3N4 dielectric distributed Bragg reflectors are employed to further improve the IPCE up to 60%. And the photocurrent (@ 1.1 V) is enhanced from 0.37 mA/cm(2) (original planar structure) to 1.5 mA/cm(2). These improvements may accelerate the possible applications for hydrogen generation with high energy-efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA