Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669310

RESUMEN

The histone lysine (K) demethylase 4 (KDM4/JHDM3) subfamily of jumonji domain-containing demethylases (JMJs) has been implicated in various aspects of plant development. However, their involvement in regulating the ripening of fleshy fruits remains unclear. Here, we identified SlJMJ3, a member of the KDM4/JHDM3 family, as a H3K27me3 demethylase in tomato (Solanum lycopersicum) that plays an important role in fruit ripening regulation. Overexpression of SlJMJ3 led to accelerated fruit ripening, whereas loss-of-function of SlJMJ3 delayed this process. Furthermore, we determined that SlJMJ3 exerts its regulatory function by modulating the expression of multiple ripening-related genes involved in ethylene biosynthesis and response, carotenoid metabolism, cell wall modification, transcriptional control, and DNA methylation modification. SlJMJ3 bound directly to the promoters of ripening-related genes harboring the CTCTGYTY motif and activates their expression. Additionally, SlJMJ3 reduced the levels of H3K27me3 at its target genes, thereby up-regulating their expression. In summary, our findings highlight the role of SlJMJ3 in the regulation of fruit ripening in tomato. By removing the methyl group from trimethylated histone H3 lysine 27 at ripening-related genes, SlJMJ3 acts as an epigenetic regulator that orchestrates the complex molecular processes underlying fruit ripening.

2.
Plant Physiol ; 194(4): 2322-2337, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37995308

RESUMEN

Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established importance of WUSCHEL-related homeobox (WOX) TFs in plant development, the involvement of WOX and its underlying mechanism in the regulation of fruit ripening remain unclear. Here, we demonstrate that SlWOX13 regulates fruit ripening in tomato (Solanum lycopersicum). Overexpression of SlWOX13 accelerates fruit ripening, whereas loss-of-function mutation in SlWOX13 delays this process. Moreover, ethylene synthesis and carotenoid accumulation are significantly inhibited in slwox13 mutant fruit but accelerated in SlWOX13 transgenic fruit. Integrated analyses of RNA-seq and chromatin immunoprecipitation (ChIP)-seq identified 422 direct targets of SlWOX13, of which 243 genes are negatively regulated and 179 are positively regulated by SlWOX13. Electrophoretic mobility shift assay, RT-qPCR, dual-luciferase reporter assay, and ChIP-qPCR analyses demonstrated that SlWOX13 directly activates the expression of several genes involved in ethylene synthesis and signaling and carotenoid biosynthesis. Furthermore, SlWOX13 modulates tomato fruit ripening through key ripening-related TFs, such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), and NAM, ATAF1, 2, and CUC2 4 (NAC4). Consequently, these effects promote fruit ripening. Taken together, these results demonstrate that SlWOX13 positively regulates tomato fruit ripening via both ethylene synthesis and signaling and by transcriptional regulation of key ripening-related TFs.


Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum lycopersicum/genética , Genes Homeobox , Frutas/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Carotenoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Aging (Albany NY) ; 15(4): 1107-1129, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36812484

RESUMEN

Our study aimed to observe the correlation between epidermal growth factor receptor (EGFR) and programmed cell death-ligand 1 (PD-L1) expression and evaluate prognostic potential of their co-expression in esophageal squamous cell carcinoma (ESCC) patients. EGFR and PD-L1 expression were evaluated by immunohistochemical analysis. We revealed that there was a positive correlation between EGFR and PD-L1 expression in ESCC (P = 0.004). According to the positive relationship between EGFR and PD-L1, all patients were divided into four groups: EGFR (+)/PD-L1 (+), EGFR (+)/PD-L1 (-), EGFR (-)/PD-L1 (+), and EGFR (-)/PD-L1 (-). In 57 ESCC patients without surgery, we found that EGFR and PD-L1 co-expression were statistically correlated with a lower objective response rate (ORR) (p = 0.029), overall survival (OS) (p = 0.018) and progression-free survival (PFS) (p = 0.045) than those with one or none positive protein. Furthermore, PD-L1 expression has a significant positive correlation with infiltration level of 19 immune cells, EGFR expression was significantly correlated with infiltration level of 12 immune cells. The infiltration level of CD8 T cell and B cell were negatively correlated with EGFR expression. On the contrary with EGFR, the infiltration level of CD8 T cell, and B cell were positively correlated with PD-L1 expression. In conclusion, EGFR and PD-L1 co-expression could predict poor ORR and survival in ESCC without surgery, indicating a subset of patients who may benefit from a combination of targeted therapy against EGFR and PD-L1, which may expand the population benefiting from immunotherapy and reduce the occurrence of hyper progressive diseases.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Pronóstico , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Ligandos , Estimación de Kaplan-Meier , Receptores ErbB/metabolismo , Apoptosis
4.
Food Chem ; 405(Pt B): 134957, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36417802

RESUMEN

Fruit chilling injury is the result of physiological dysfunction due to membrane lipid phase change, oxidative damage of biomacromolecules and respiratory metabolism abnormality. However, the involvement of transcription factors in response to fruits chilling tolerance remains largely unclear. Here, MaMYB13 was identified to participate in banana fruit response to chilling stress. MaMYB13 has transcriptional activation activity. When exposed to low temperature, expression of MaMYB13 was enormously induced. Moreover, MaMYB13 promoter was activated by chilling stress. MaMYB13 bound to the promoters of several important very-long-chain fatty acids (VLCFAs) and phenylpropanoids biosynthesis-related genes, including MaKCS11, Ma4CL6 and MaAAE1, and activated their transcription. Furthermore, MaKIN10 X1/3 interacted with MaMYB13 and enhanced MaMYB13-mediated transcriptional activation possibly via phosphorylation. Altogether, our results unravel the mechanism of MaMYB13-MaKIN10 X1/3 interaction regulating banana fruit chilling tolerance through activating the expression of MaKCS11, Ma4CL6 and MaAAE1, providing new insights into the regulatory network of MYB transcription factor.


Asunto(s)
Musa , Musa/genética , Frutas/genética , Metabolismo Secundario , Fosforilación , Frío , Factores de Transcripción/genética
5.
Food Chem ; 404(Pt B): 134657, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327512

RESUMEN

Both cytokinin and NAC transcription factors were reported to involve in leaf senescence. However, the mechanism of NAC transcription factors how to regulate cytokinin-delayed leaf senescence is still unknown. In this study, application of N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), a cytokinin analogue, significantly delayed leaf senescence and maintained cytokinin content of Chinese flowering cabbage during storage. Meanwhile, the expression of an NAC transcriptional activator (BrNAC029) was increased but suppressed by CPPU treatment. Furthermore, BrNAC029 activated the expressions of chlorophyll catabolic genes BrPAO and BrSGR2, cytokinin oxidase gene BrCKX1 and senescence maker gene BrSAG113 by binding to their promoters. Additionally, overexpressions of BrNAC029 in tobacco and Arabidopsis accelerated leaf senescence and up-expressed the related genes. Taken together, it was suggested that BrNAC029 may serve as a transcriptional activator to activate the transcriptions of these related genes to eventually accelerate leaf senescence of Chinese flowering cabbage by promoting chlorophyll degradation and reducing endogenous cytokinin level.


Asunto(s)
Arabidopsis , Brassica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Citocininas , Senescencia de la Planta , Hojas de la Planta/metabolismo , Brassica/genética , Brassica/metabolismo , Clorofila/metabolismo , Arabidopsis/metabolismo , China , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Food Chem ; 407: 135102, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36495744

RESUMEN

Histone methylation plays important roles in plant development. However, the role of histone methylation in fruit ripening remains unclear. Here, a total of 16 Jumonji domain-containing proteins (JMJs) were identified from banana genome. During fruit ripening, expression of MaJMJ15 was significantly upregulated. Exogenous ethylene accelerated the upregulation whereas 1-methylcyclopropene delayed the process, suggesting that MaJMJ15 positively regulates banana fruit ripening. MaJMJ15 is an H3K27me3 site-specific demethylase. Transient overexpression of MaJMJ15 promoted banana fruit ripening. Moreover, the global H3K27me3 was decreased by MaJMJ15. Furthermore, MaJMJ15 directly targeted several key ripening-related genes (RRGs) in banana including NAC transcription factor 1/2 (MaNAC1/2), 1-aminocyclopropane-1-carboxylate synthase 1 (MaACS1), 1-aminocyclopropane-1-carboxylate oxidase 1 (MaACO1) and expansin 2 (MaEXP2), removed H3K27me3 from their chromatin, and activated their expression. Our data suggest that MaJMJ15 is an H3K27me3 demethylase, which is involved in the regulation of banana fruit ripening by activating expression of key RRGs via removal of H3K27me3.


Asunto(s)
Musa , Musa/genética , Musa/metabolismo , Histonas/genética , Histonas/metabolismo , Frutas/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
J Adv Res ; 42: 177-188, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513412

RESUMEN

INTRODUCTION: Histone and non-histone methylations are important post-translational modifications in plants. Histone methylation plays a crucial role in regulating chromatin structure and gene expression. However, the involvement of non-histone methylation in plant biological processes remains largely unknown. METHODS: The methylated substrates and methylation sites during tomato fruit ripening were identified by LC-MS/MS. Bioinformatics of lysine methylated proteins was conducted to analyze the possible role of methylated proteins. The effects of methylation modification on protein functions were preliminarily investigated by site-directed mutation simulation. RESULTS: A total of 241 lysine methylation (mono-, di- and trimethylation) sites in 176 proteins were identified with two conserved methylation motifs: xxxxxxExxx_K_xxxExxxxxx and xxxxxxExxx_K_xxxxxxxxxx. These methylated proteins were mainly related to fruit ripening and senescence, oxidation reduction process, signal transduction, stimulus and stress responses, and energy metabolism. Three representative proteins, thioredoxin (Trx), glutathione S-transferase T1 (GST T1), and NADH dehydrogenase (NOX), were selected to investigate the effect of methylation modifications on protein activity. Mimicking demethylation led to decreased Trx activity but increased GST T1 and NOX activities. In addition, RT-qPCR exhibited that the expression of many genes that encode proteins subjected to methylation was upregulated during fruit ripening. CONCLUSION: Our study suggests that tomato fruit ripening undergo non-histone lysine methylation, which may participate in the regulation of fruit ripening. It is the first report of methyl proteome profiling of non-histone lysine in horticultural crops.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Metilación , Proteoma/metabolismo , Lisina/metabolismo , Regulación de la Expresión Génica de las Plantas , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Histonas/genética , Histonas/metabolismo
8.
Plant J ; 111(3): 698-712, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35634876

RESUMEN

Cellular energy status is a key factor deciding the switch-on of the senescence of horticultural crops. Despite the established significance of the conserved energy master regulator sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) in plant development, its working mechanism and related signaling pathway in the regulation of fruit senescence remain enigmatic. Here, we demonstrate that energy deficit accelerates fruit senescence, whereas exogenous ATP treatment delays it. The transient suppression of LcSnRK1α in litchi (Litchi chinensis Sonn.) fruit inhibited the expression of energy metabolism-related genes, while its ectopic expression in tomato (Solanum lycopersicum) promoted ripening and a high energy level. Biochemical analyses revealed that LcSnRK1α interacted with and phosphorylated the transcription factors LcbZIP1 and LcbZIP3, which directly bound to the promoters to activate the expression of DARK-INDUCIBLE 10 (LcDIN10), ASPARAGINE SYNTHASE 1 (LcASN1), and ANTHOCYANIN SYNTHASE (LcANS), thereby fine-tuning the metabolic reprogramming to ensure energy and redox homeostasis. Altogether, these observations reveal a post-translational modification mechanism by which LcSnRK1α-mediated phosphorylation of LcbZIP1 and LcbZIP3 regulates the expression of metabolic reprogramming-related genes, consequently modulating litchi fruit senescence.


Asunto(s)
Litchi , Solanum lycopersicum , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Litchi/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal
9.
New Phytol ; 233(3): 1202-1219, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34729792

RESUMEN

The ripening of fleshy fruits is a unique developmental process that Arabidopsis and rice lack. This process is driven by hormones and transcription factors. However, the critical and early regulators of fruit ripening are still poorly understood. Here, we revealed that SlJMJ7, an H3K4 demethylase, is a critical negative regulator of fruit ripening in tomato. Combined genome-wide transcription, binding sites, histone H3K4me3 and DNA methylation analyses demonstrated that SlJMJ7 regulates a key group of ripening-related genes, including ethylene biosynthesis (ACS2, ACS4 and ACO6), transcriptional regulation (RIN and NOR) and DNA demethylation (DML2) genes, by H3K4me3 demethylation. Moreover, loss of SlJMJ7 function leads to increased H3K4me3 levels, which directly activates ripening-related genes, and to global DML2-mediated DNA hypomethylation in fruit, which indirectly prompts expression of ripening-related genes. Together, these effects lead to accelerated fruit ripening in sljmj7 mutant. Our findings demonstrate that SlJMJ7 acts as a master negative regulator of fruit ripening not only through direct removal of H3K4me3 from multiple key ripening-related factors, but also through crosstalk between histone and DNA demethylation. These findings reveal a novel crosstalk between histone methylation and DNA methylation to regulate gene expression in plant developmental processes.


Asunto(s)
Solanum lycopersicum , ADN , Desmetilación del ADN , Metilación de ADN/genética , Etilenos/metabolismo , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo
10.
Food Chem ; 368: 130819, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34411865

RESUMEN

Squalene and ß-sitosterol are health-benefit compounds due to their nutritional and medicinal properties. It has been reported that the content of these bioactive compounds is relatively high in Torreya grandis nuts. However, it is not yet known what changes in squalene and ß-sitosterol accumulation occur during the special post-ripening process of T. grandis nuts and the effect of the well-known ripening hormone ethylene on the regulatory mechanism of their biosynthetic pathways. Thus, we performed transcriptome and metabolite analyses. The results showed that ethylene not only promoted the post-ripening process but also enhanced the accumulation of squalene by inducing gene expression in the mevalonate pathway. At the same time, ethylene treatment also promoted the accumulation of other sterols but inhibited gene expression in the ß-sitosterol biosynthesis pathway. In addition, co-expression and correlation analysis suggested a framework for the transcriptional regulation of squalene and ß-sitosterol biosynthesis genes under ethylene treatment.


Asunto(s)
Nueces , Taxaceae , Etilenos , Frutas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Sitoesteroles , Escualeno
11.
Clin Exp Med ; 22(2): 193-200, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34471998

RESUMEN

Colon cancer is one of most common cancers. The progression of various cancers is driven by miRNA-570. The role of miRNA-570 in the progression of colon cancer remains unclear. We aimed to investigate the clinical function of miR-570 and its impact on colon cancer cells. We evaluated the expression of miR-570 in colon cancer cells and analyzed its influence on the various clinical parameters. The Kaplan-Meier curve was plotted to understand the clinical role of miR-570. Cox regression analysis was performed to predict the prognostic factors in colon cancer. The Cell Counting Kit-8 was used to investigate the effect of miR-570 on cell proliferation. The transwell migration assay was performed to quantify cell migration and invasion. The quantitative real-time polymerase chain reaction technique was used to analyze the sample system. The results revealed that the level of miR-570 expression in colon cancer tissues and cell lines was low. The abnormal expression of miR-570 was associated with tumor size, extent of differentiation, lymph node metastasis, and tumor-node-metastasis stages. Downregulation of miR-570 indicated poor overall survival (OS), poor relapse-free survival, and unfavorable cancer-specific survival (CSS) rates in patients with colon cancer. The results from Cox regression analysis revealed that miR-570 expression could be used as an independent prognostic biomarker for OS and CSS in colon cancer. Overexpression of miR-570 can potentially result in the inhibition of cell proliferation, migration, and invasion. The results proved that miR-570 could potentially function as a tumor suppressor and a potential prognostic factor in patients with colon cancer.


Asunto(s)
Neoplasias del Colon , MicroARNs , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias del Colon/genética , Humanos , MicroARNs/metabolismo , Invasividad Neoplásica , Recurrencia Local de Neoplasia , Pronóstico
12.
Hum Cell ; 35(1): 333-347, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34825342

RESUMEN

The ectopic expression of ubiquitin-specific peptidase 21 (USP21) is common in different types of cancer. However, its relationship with radio-sensitivity in cervical cancer (CC) remains unclear. In this study, we aimed to uncover the effect of USP21 on CC radio-resistance and its underlying mechanism. Our results showed that the expression of USP21 was markedly increased in CC tissues of radio-resistant patients and CC cells treated with radiation. Besides, knockdown of USP21 restrained the survival fractions, and facilitated apoptosis of CC cells in the absence or presence of radiation. Additionally, USP21 in combination with FOXM1 regulated the stability and ubiquitination of FOXM1. However, FOXM1 reversed the effects of USP21 knockdown on the radio-resistance of CC cells. Furthermore, FOXM1 knockdown activated the Hippo pathway by inhibiting the nuclear translocation of Yes-associated protein 1 (YAP1), and FOXM1 knockdown attenuated the radio-resistance of CC cells via inhibiting the Hippo-YAP1 pathway. USP21 activated the Hippo pathway by mediating FOXM1. Knockdown of USP21 enhanced the radio-sensitivity of CC cells in vivo. In summary, USP21 contributed to the radio-resistance of CC cells via FOXM1/Hippo signaling, and may serve as a promising target for radio-sensitizers in the radiotherapy of CC.


Asunto(s)
Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Vía de Señalización Hippo/genética , Vía de Señalización Hippo/fisiología , Tolerancia a Radiación/genética , Ubiquitina Tiolesterasa/fisiología , Ubiquitinación , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/radioterapia , Línea Celular Tumoral , Femenino , Humanos , Fármacos Sensibilizantes a Radiaciones , Neoplasias del Cuello Uterino/patología , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
13.
Bioengineered ; 12(2): 12931-12939, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34852705

RESUMEN

This study aims to investigate the potential clinical function of long non-coding RNA CERS6-AS1 (lncRNA CERS6-AS1) integrated miR-567 in gastric cancer. The expression of CERS6-AS1 in gastric cancer tissues was detected through RT-qPCR in contrast to the normal tissues. The correlation between the expression of lncRNA CERS6-AS1 and the characteristics of clinical data was analyzed. Kaplan-Meier curve was used to assess the survival analysis, while Cox proportional hazards model multivariate analysis was performed to evaluate the prognostic risk factors of gastric cancer to verify the prognostic possibility of CERS6-AS1. The expression of CERS6-AS1 in different gastric cancer cells was detected, being the development of gastric cancer cells after knockdown CERS6-AS1 studied using CCK-8, Transwell migration, and invasion detection methods. The targeting effect and interaction between CERS6-AS1 and miR-567 through biological analysis and luciferase activity detection. The expression of lncRNA CERS6-AS1 was elevated in gastric cancer tissues and cells. The results of this study demonstrate that the condition of gastric cancer patients was related to the expression of CERS6-AS1, and therefore CERS6-AS1 might be a prognostic factor for the progression of gastric cancer. In addition, the ability of gastric cancer cells to proliferate, migrate and invade could be reduced by knockdown CERS6-AS1. After CERS6-AS1 knockdown, the expression level of miR-567 in gastric cancer tissues decreased, while the expression level of miR-567 increased. In conclusion, lncRNA CERS6-AS1 might promote the progression of gastric cancer and had the potential as a prognostic marker of gastric cancer.


Asunto(s)
Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Secuencia de Bases , Línea Celular Tumoral , Femenino , Humanos , Luciferasas/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Análisis de Supervivencia
14.
Int J Oncol ; 59(5)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34558643

RESUMEN

The present study aimed to explore the role of the long noncoding RNA cytoskeleton regulator (CYTOR) in non­small cell lung cancer (NSCLC) radiosensitivity by manipulating the microRNA (miR)­206/prothymosin α (PTMA) axis. First, 58 pairs of NSCLC and paracancerous tissues, normal human lung epithelial cells and NSCLC cells were collected to analyze CYTOR expression and the relationship between CYTOR and NSCLC prognosis. Subsequently, CYTOR expression in radioresistant cells was assessed. Radioresistant cells with low CYTOR expression and parental cells with high CYTOR expression were established. Functional assays were then performed to assess changes in cell radiosensitivity after irradiation treatment. Subsequently, the downstream mechanism of CYTOR was explored. The binding interactions between CYTOR and miR­206 and between miR­206 and PTMA were predicted and certified. Xenograft transplantation was applied to confirm the role of CYTOR in the radiosensitivity of NSCLC. CYTOR was overexpressed in NSCLC and was associated with poor prognosis. CYTOR was further upregulated in NSCLC cells with radioresistance. CYTOR knockdown enhanced the radiosensitivity of NSCLC cells, while overexpression of CYTOR led to the opposite result. Mechanistically, CYTOR specifically bound to miR­206 and silencing CYTOR promoted miR­206 to enhance the radiosensitivity of NSCLC cells. PTMA is a target of miR­206 and silencing CYTOR inhibited PTMA expression via miR­206, thus promoting radiosensitivity of NSCLC cells. CYTOR knockdown also enhanced NSCLC cell radiosensitivity in vivo. CYTOR was highly expressed in NSCLC, while silencing CYTOR potentiated NSCLC cell radiosensitivity by upregulating miR­206 and suppressing PTMA. The present study preliminarily revealed the role of CYTOR in radiotherapy sensitivity of NSCLC and provided a novel potential target for the clinical treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Citoesqueleto/fisiología , Neoplasias Pulmonares/radioterapia , MicroARNs/fisiología , Precursores de Proteínas/fisiología , ARN Largo no Codificante/fisiología , Tolerancia a Radiación , Timosina/análogos & derivados , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos BALB C , Pronóstico , Timosina/fisiología
15.
ACS Omega ; 6(18): 11804-11812, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34056334

RESUMEN

Biobased materials such as cellulose, chitin, silk, soy, and keratin are attractive alternatives to conventional synthetic materials for filtration applications. They are cheap, naturally abundant, and easily fabricated with tunable surface chemistry and functionality. With the planet's increasing crisis due to pollution, the need for proper filtration of air and water is undeniably urgent. Additionally, fibers that are antibacterial and antiviral are critical for public health and in medical environments. The current COVID-19 pandemic has highlighted the necessity for cheap, easily mass-produced antiviral fiber materials. Biopolymers can fill these roles very well by utilizing their intrinsic material properties, surface chemistry, and hierarchical fiber morphologies for efficient and eco-friendly filtration of physical, chemical, and biological pollutants. Further, they are biodegradable, making them attractive as sustainable, biocompatible green filters. This review presents various biopolymeric materials generated from proteins and polysaccharides, their synthesis and fabrication methods, and notable uses in filtration applications.

16.
Antioxidants (Basel) ; 10(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670705

RESUMEN

Ascorbate peroxidase (APX) is a key antioxidant enzyme that is involved in diverse developmental and physiological process and stress responses by scavenging H2O2 in plants. APX itself is also subjected to multiple posttranslational modifications (PTMs). However, redox-mediated PTM of APX in plants remains poorly understood. Here, we identified and confirmed that MaAPX1 interacts with methionine sulfoxide reductase B2 (MsrB2) in bananas. Ectopic overexpression of MaAPX1 delays the detached leaf senescence induced by darkness in Arabidopsis. Sulfoxidation of MaAPX1, i.e., methionine oxidation, leads to loss of the activity, which is repaired partially by MaMsrB2. Moreover, mimicking sulfoxidation by mutating Met36 to Gln also decreases its activity in vitro and in vivo, whereas substitution of Met36 with Val36 to mimic the blocking of sulfoxidation has little effect on APX activity. Spectral analysis showed that mimicking sulfoxidation of Met36 hinders the formation of compound I, the first intermediate between APX and H2O2. Our findings demonstrate that the redox state of methionine in MaAPX1 is critical to its activity, and MaMsrB2 can regulate the redox state and activity of MaAPX1. Our results revealed a novel post-translational redox modification of APX.

17.
J Integr Plant Biol ; 63(7): 1341-1352, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33656245

RESUMEN

The alternative splicing of select genes is an important mechanism to regulate responses to endogenous and environmental signals in plants. However, the role of alternative splicing in regulating fruit ripening remains unclear. Here, we discovered that MaMYB16L, an R1-type MYB transcription factor, undergoes alternative splicing and generates two transcripts, the full-length isoform MaMYB16L and a truncated form MaMYB16S, in banana fruit. During banana fruit ripening, the alternative splicing process intensifies with downregulated MaMYB16L and upregulated MaMYB16S. Moreover, MaMYB16L is a transcriptional repressor that directly binds with the promoters of many genes associated with starch degradation and MaDREB2, a positive ripening regulator, and represses their expression. In contrast, MaMBY16S lacks a DNA-binding domain but competitively combines and forms non-functional heterodimers with functional MaMYB16L. MaMYB16L-MaMYB16S heterodimers decrease the binding capacity and transrepression activity of MaMYB16L. The downregulation of MaMYB16L and the upregulation of MaMYB16S, that is, a decreased ratio of active to non-active isoforms, facilitates the activation of ripening-related genes and thereby promotes fruit ripening. Furthermore, the transient overexpression of MaMYB16S promotes banana fruit ripening, whereas the overexpression of MaMYB16L delays this process. Therefore, the alternative splicing of MaMYB16L might generate a self-controlled regulatory loop to regulate banana fruit ripening.


Asunto(s)
Frutas/metabolismo , Musa/metabolismo , Factores de Transcripción/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Musa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Activación Transcripcional/fisiología
18.
Food Chem ; 347: 129009, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33444889

RESUMEN

Litchis are tasty fruit with economic importance. However, the extreme susceptibility of harvested litchis to litchi downy blight caused by Peronophythora litchii leads to compromised quality. This study aimed to study the effects of melatonin on postharvest resistance to P. litchii in 'Feizixiao' litchis. Results showed that melatonin restricted lesion expansion in litchis after P. litchi inoculation. Melatonin enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase and 4-hydroxycinnamate CoA ligase while promoting the accumulations of phenolics and flavonoids. Nicotinamide adenine dinucleotide phosphate content and glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase activities were higher in treated fruit than control fruit. Higher energy status along with elevated H+-ATPase, Ca2+-ATPase, succinate dehydrogenase and cytochrome C oxidase activities were observed in treated fruit. Ultrastructural observation showed reduced damage in mitochondria in treated fruit. The results suggest that melatonin induced resistance in litchis by modulating the phenylpropanoid and pentose phosphate pathways as well as energy metabolism. .


Asunto(s)
Metabolismo Energético , Litchi/metabolismo , Melatonina/farmacología , Micosis/tratamiento farmacológico , Enfermedades de las Plantas , Flavonoides/análisis , Flavonoides/metabolismo , Frutas/química , Litchi/química , Litchi/efectos de los fármacos , Litchi/microbiología , Melatonina/química , Fenoles/análisis , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/análisis , Fenilanina Amoníaco-Liasa/metabolismo , Transcinamato 4-Monooxigenasa/análisis , Transcinamato 4-Monooxigenasa/metabolismo
19.
Food Chem ; 345: 128664, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-33340895

RESUMEN

Thioredoxins (Trxs) are important redox regulators in organisms. However, their involvement in fruit senescence and quality deterioration remains unclear. In this study, one Trx (DlTrx1) and one NADPH-dependent Trx reductase (DlNRT1) cDNAs, were cloned from longan fruit. The DlTrx1 could be effectively reduced by the DlNTR1. Expression of DlTrx1 and DlNTR1 were up-regulated during fruit senescence and quality deterioration. We further identified 33 potential Trx target proteins in longan, including one glutathione peroxidase (DlGpx). DlTrx1 could physically interact with DlGpx. DlTrx1 in combination with DlNTR1 effectively activated DlGpx activity by regulating its redox state. Cys90 in DlGPx could form a disulfide bond with either Cys42 or Cys71, which were the sites of redox modulation. Furthermore, DlGpx exhibited a higher ratio of disulfide bonds to sulfhydryl groups in senescent or deteriorative fruit. We propose that Trx-mediated redox regulation of DlGpx is involved in senescence or quality deterioration of harvested longan fruit.


Asunto(s)
Calidad de los Alimentos , Frutas/metabolismo , Glutatión Peroxidasa/metabolismo , Sapindaceae/metabolismo , Tiorredoxinas/metabolismo , Glutatión/metabolismo , Oxidación-Reducción
20.
J Exp Bot ; 72(2): 682-699, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33070185

RESUMEN

Redox modification of functional or regulatory proteins has emerged as an important mechanism of post-translational modification. However, the role of redox modifications of transcription factors mediated by methionine sulfoxide reductase (Msr) in regulating physiological processes in plants remains unclear, especially in fruit ripening. In this study, we determined that MaNAC42, a transcriptional activator, is involved in the regulation of fruit ripening in banana under oxidative stress. Integrated analysis of ChIP-qPCR and EMSA data showed that MaNAC42 directly binds to promoters of genes related to oxidative stress and ripening. Ectopic overexpression of MaNAC42 in Arabidopsis delays dark-induced senescence in leaves, indicating that MaNAC42 plays a negative role in senescence. Furthermore, we found that MaNAC42 is a target of MaMsrB2, a methionine sulfoxide reductase B. Methionine oxidation in MaNAC42 (i.e. sulfoxidation) or mimicking sulfoxidation by mutating methionine to glutamine both lead to decreased DNA-binding capacity and transcriptional activity. On the other hand, MaMsrB2 can partially repair oxidized MaNAC42 and restore its DNA-binding capacity. Thus, our results suggest a novel regulatory mechanism of fruit ripening in banana involving MaMsrB2-mediated redox regulation of the ripening-related transcription factor MaNAC42.


Asunto(s)
Musa , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Musa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...