Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nanomicro Lett ; 16(1): 210, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842604

RESUMEN

Nickel-rich layered oxide LiNixCoyMnzO2 (NCM, x + y + z = 1) is the most promising cathode material for high-energy lithium-ion batteries. However, conventional synthesis methods are limited by the slow heating rate, sluggish reaction dynamics, high energy consumption, and long reaction time. To overcome these challenges, we first employed a high-temperature shock (HTS) strategy for fast synthesis of the NCM, and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time. In the HTS process, ultrafast average reaction rate of phase transition from Ni0.6Co0.2Mn0.2(OH)2 to Li- containing oxides is 66.7 (% s-1), that is, taking only 1.5 s. An ultrahigh heating rate leads to fast reaction kinetics, which induces the rapid phase transition of NCM cathodes. The HTS-synthesized nickel-rich layered oxides perform good cycling performances (94% for NCM523, 94% for NCM622, and 80% for NCM811 after 200 cycles at 4.3 V). These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.

2.
Nat Chem Biol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744986

RESUMEN

G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167210, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38704001

RESUMEN

Oxaliplatin has been included as a basal drug in various chemotherapy regimens for colorectal cancer (CRC), a global health concern. However, acquired resistance to oxaliplatin affects the prognosis. This study aimed to determine whether the consumption of a KD increases the sensitivity of CRC cells to oxaliplatin via the inhibition of a classical stem cell marker, Krupple-like factor 5 (KLF5). KLF5 functions as a transcription factor for the leukemia inhibitory factor (LIF) and directly binds to its promoter region. LIF upregulation induces dephosphorylation of metal regulatory transcription factor 1 (MTF1), which is recruited to the promoter area of Ferroportin (FPN1), the only cellular iron exporter. FPN1 upregulation reduces the labile iron pool (LIP) and ferroptosis in CRC cells. KLF5 knockdown inhibits the LIF/MTF1/FPN1 axis and induces iron overload, thereby conferring sensitivity to oxaliplatin to CRC cells. KD mimicked KLF5 silencing and sensitized CRC cells to oxaliplatin via a similar mechanism. Thus, potential correlations were observed among ketogenesis, stemness, and iron homeostasis. This finding can be used to formulate a new strategy for overcoming oxaliplatin resistance in patients with CRC.


Asunto(s)
Proteínas de Transporte de Catión , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Homeostasis , Hierro , Factores de Transcripción de Tipo Kruppel , Factor Inhibidor de Leucemia , Oxaliplatino , Humanos , Oxaliplatino/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Hierro/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Homeostasis/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/genética , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Animales
4.
Adv Mater ; : e2405956, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819626

RESUMEN

Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high-temperature shock technology is employed to controllably introduce the Li-Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li-Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge-sharing octahedra across the ab plane to 4c site of corner-sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first-principles calculations, the unique multiscale coupling structure of Li-Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high-capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high-rate electrodes.

5.
J Med Virol ; 96(4): e29582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38590253

RESUMEN

To understand the prevalence of rhinovirus (RV) among acute respiratory infection (ARI) patients, 10-year ARI surveillance in multiple provinces of China were conducted during 2012-2021. Of 15 645 ARI patients, 1180 (7.54%) were confirmed to have RV infection and 820 (69.49%) were children under 5 years of age. RV typing was performed on the 527 VP1 gene sequences, and species A, B, and C accounted for 73.24%, 4.93%, and 21.82%, respectively. Although no significant difference in the proportions of age groups or disease severity was found between RV species, RV-C was more frequently detected in children under 5 years of age, RV-A was more frequently detected in elderly individuals (≥60), and the proportions of pneumonia in RV-A and RV-C patients were higher than those in RV-B patients. The epidemic peak of RV-A was earlier than that of RV-C. A total of 57 types of RV-A, 13 types of RV-B, and 35 types of RV-C were identified in RV-infected patients, and two uncertain RV types were also detected. The findings showed a few differences in epidemiological and clinical features between RV species in ARI patients, and RV-A and RV-C were more prevalent than RV-B.


Asunto(s)
Infecciones por Enterovirus , Infecciones por Picornaviridae , Infecciones del Sistema Respiratorio , Niño , Humanos , Lactante , Preescolar , Anciano , Rhinovirus/genética , Prevalencia , Infecciones por Picornaviridae/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , China/epidemiología , Variación Genética
6.
Curr Pharm Des ; 30(2): 100-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532322

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a global public health concern. Currently, the cornerstone of NAFLD treatment is lifestyle modification and, if necessary, weight loss. However, compliance is a challenge, and this approach alone may not be sufficient to halt and treat the more serious disease development, so medication is urgently needed. Nevertheless, no medicines are approved to treat NAFLD. Glucagon-like peptide-1 (GLP-1) is an enteropeptide hormone that inhibits glucagon synthesis, promotes insulin secretion, and delays gastric emptying. GLP-1 has been found in recent studies to be beneficial for the management of NAFLD, and the marketed GLP-1 agonist drugs have different degrees of effectiveness for NAFLD while lowering blood glucose. In this article, we review GLP-1 and its physiological roles, the pathogenesis of NAFLD, the correlation between NAFLD and GLP-1 signaling, and potential strategies for GLP-1 treatment of NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/fisiología , Glucagón/uso terapéutico , Glucemia , Secreción de Insulina , Receptor del Péptido 1 Similar al Glucagón , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico
7.
Small ; 20(25): e2310611, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38212278

RESUMEN

Rational tailoring of the electronic structure at the defined active center of reconstructed metal (oxy)hydroxides (MOOH) during oxygen evolution reaction (OER) remains a challenge. With the guidance of density functional theory (DFT), herein a dual-site regulatory strategy is reported to tailor the d-band center of the Co site in CoOOH via the controlled electronic transfer at the Ru─O─Co─O─Fe bonding structure. Through the bridged O2- site, electrons are vastly flowed from the t2g-orbital of the Ru site to the low-spin orbital of the Co site in the Ru-O-Co coordination and further transfer from the strong electron-electron repulsion of the Co site to the Fe site by the Co-O-Fe coordination, which balancing the electronic configuration of Co sites to weaken the over-strong adsorption energy barrier of OH* and O*, respectively. Benefiting from the highly active of the Co site, the constructed (Ru2Fe2Co6)OOH provide an extremely low overpotential of 248 mV and a Tafel slope of 32.5 mV dec-1 at 10 mA cm-2 accompanied by long durability in alkaline OER, far superior over the pristine and Co-O-Fe bridged CoOOH catalysts. This work provides guidance for the rational design and in-depth analysis of the optimized role of metal dual-sites.

8.
Neural Netw ; 169: 44-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37857172

RESUMEN

Complementary label learning (CLL) is an important problem that aims to reduce the cost of obtaining large-scale accurate datasets by only allowing each training sample to be equipped with labels the sample does not belong. Despite its promise, CLL remains a challenging task. Previous methods have proposed new loss functions or introduced deep learning-based models to CLL, but they mostly overlook the semantic information that may be implicit in the complementary labels. In this work, we propose a novel method, ComCo, which leverages a contrastive learning framework to assist CLL. Our method includes two key strategies: a positive selection strategy that identifies reliable positive samples and a negative selection strategy that skillfully integrates and leverages the information in the complementary labels to construct a negative set. These strategies bring ComCo closer to supervised contrastive learning. Empirically, ComCo significantly achieves better representation learning and outperforms the baseline models and the current state-of-the-art by up to 14.61% in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Semántica
9.
Biomed Pharmacother ; 170: 116024, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113623

RESUMEN

Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.


Asunto(s)
Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Preparaciones Farmacéuticas , Nervios Periféricos/fisiología , Sistemas de Liberación de Medicamentos , Sustancias Macromoleculares , Regeneración Nerviosa , Nervio Ciático
10.
Sci Data ; 10(1): 795, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951944

RESUMEN

This rapid response surveillance project was funded by the National Science Foundation (NSF) to collect "perishable" data on egress behaviors and neighborhood conditions surrounding healthcare centers (HCCs) in New York City (NYC) during the initial NYC COVID-19 PAUSE ordinance from March 22nd to May 19th, 2020. Anonymized data on NYC HCC egress behaviors were collected by observational field workers using phone-based mapping applications. Each egress trip record includes the day of week, time of day, destination category type, along with an array of behavioral outcome categories, ambient weather conditions and socio-economic factors. Egress trajectories with precise estimates of distance traveled and the spatial dispersion or "spread" around each HCC were added via post-processing. The data collection and cleaning process resulted in 5,030 individual egress records from 18 facilities over a 9-week period.

11.
Int J Biol Macromol ; 253(Pt 6): 126793, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37709238

RESUMEN

The incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions. This technique is intricate and time-consuming, and the application of threading and punctate sutures may lead to tissue damage and heightened tension concentrations, thus increasing the risk of fixation failure and local inflammation. This study aimed to develop easily implantable chitosan-based peripheral nerve repair conduits that combine acrylic acid and cleavable N-hydroxysuccinimide to reduce nerve damage during repair. In ex vivo tissue adhesion tests, the conduit achieved maximal interfacial toughness of 705 J m-2 ± 30 J m-2, allowing continuous bridging of the severed nerve ends. Adhesive repair significantly reduces local inflammation caused by conventional sutures, and the positive charge of chitosan disrupts the bacterial cell wall and reduces implant-related infections. This promises to open new avenues for sutureless nerve repair and reliable medical implants.


Asunto(s)
Quitosano , Traumatismos de los Nervios Periféricos , Procedimientos Quirúrgicos sin Sutura , Humanos , Traumatismos de los Nervios Periféricos/cirugía , Adhesivos , Inflamación , Regeneración Nerviosa , Nervios Periféricos/cirugía
12.
Free Radic Biol Med ; 208: 571-586, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37696420

RESUMEN

Cisplatin (CPT) is one of the standard treatments for hepatocellular carcinoma (HCC). However, its use is limits as a monotherapy due to drug resistance, and the underlying mechanism remains unclear. To solve this problem, we tried using canagliflozin (CANA), a clinical drug for diabetes, to reduce chemoresistance to CPT, and the result showed that CANA could vigorously inhibit cell proliferation and migration independent of the original target SGLT2. Mechanistically, CANA reduced aerobic glycolysis in HCC by targeting PKM2. The downregulated PKM2 directly bound to the transcription factor c-Myc in the cytoplasm to form a complex, which upregulated the level of phosphorylated c-Myc Thr58 and promoted the ubiquitination and degradation of c-Myc. Decreased c-Myc reduced the expression of GLS1, a key enzyme in glutamine metabolism, leading to impaired glutamine utilization. Finally, intracellular glutamine starvation induced ferroptosis and sensitized HCC to CPT. In conclusion, our study showed that CANA re-sensitized HCC to CPT by inducing ferroptosis through dual effects on glycolysis and glutamine metabolism. This is a novel mechanism to increase chemosensitivity, which may provide compatible chemotherapy drugs for HCC.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Humanos , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Glutamina/metabolismo , Glucólisis , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-myc/efectos de los fármacos , Proteínas de Unión a Hormona Tiroide
13.
Sci Rep ; 13(1): 15913, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741897

RESUMEN

To understand the epidemiological and genetic characteristics of B19V, a multiple-province surveillance of patients with febrile rash illnesses (FRIs) were conducted in China during 2009 ~ 2021. The clinical specimens of 3,820 FRI patients were collected and tested for B19V DNA. A total of 99 (2.59%) patients were positive for B19V, and 49 (49.49%) were children under 5 years old. B19V infections occurred throughout the year without obvious seasonal pattern. Ten NS1-VP1u sequences and seven genome sequences were obtained in this study, identified as subgenotype 1a. Combined with the globally representative genome sequences, no temporal and geographic clustering trends of B19V were observed, and there was no significant correlation between B19V sequences and clinical manifestations. The evolutionary rate of the B19V genome was 2.30 × 10-4 substitutions/site/year. The number of negative selection sites was higher than that of positive selection sites. It was the first to comprehensively describe the prevalence patterns and evolutionary characteristics of B19V in FRI patients in China. B19V played the role in FRI patients. Children under 5 years old were the main population of B19V infection. Subgenotype 1a was prevalent in FRI patients in China. B19V showed a high mutation rate, while negative selection acted on the genome.


Asunto(s)
Terapia de Aceptación y Compromiso , Exantema , Parvovirus B19 Humano , Niño , Humanos , Preescolar , Parvovirus B19 Humano/genética , China/epidemiología , Exantema/epidemiología , Exantema/genética , Evolución Biológica
14.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762437

RESUMEN

Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.

15.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629137

RESUMEN

Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.


Asunto(s)
Quitosano , Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Quitosano/uso terapéutico , Tratamiento Conservador , Biopolímeros/uso terapéutico , Proliferación Celular
16.
Int J Bioprint ; 9(5): 770, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608847

RESUMEN

The micron track conduit (MTC) and nerve factor provide a physical and biological model for simulating peripheral nerve growth and have potential applications for nerve injury. However, it has rarely been reported that they synergize on peripheral nerves. In this study, we used bioderived chitosan as a substrate to design and construct a neural repair conduit with micron track topography using threedimensional (3D) printing topography. We loaded the MTC with neurotrophin-3 (NT-3) to promote the regeneration of sensory and sympathetic neurons in the peripheral nervous system. We found that the MTC@NT3 composite nerve conduit mimicked the microenvironment of peripheral nerves and promoted axonal regeneration while inducing the targeted growth of Schwann cells, which would promote functional recovery in rats with peripheral nerve injury. Artificial nerve implants with functional properties can be developed using the strategy presented in this study.

17.
Ecotoxicol Environ Saf ; 262: 115331, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37556956

RESUMEN

Acetaminophen (APAP) overdose has long been considered a major cause of drug-induced liver injury. Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation. Endoplasmic reticulum (ER) stress is a systemic response triggered by the accumulation of unfolded or misfolded proteins in the ER. Ferroptosis and ER stress have been proven to contribute to the progression of APAP-induced acute liver injury (ALI). It was reported that salidroside protects against APAP-induced ALI, but the potential mechanism remain unknown. In this study, male C57BL/6 J mice were intraperitoneally (i.p.) injected APAP (500 mg/kg) to induce an ALI model. Salidroside was i.p. injected at a dose of 100 mg/kg 2 h prior to APAP administration. Mice were sacrificed 12 h after APAP injection and the liver and serum of the mice were obtained for histological and biochemistry analysis. AML12 cells were used in in vitro assays. The results indicated that salidroside mitigated glutathione degradation via inhibiting cation transport regulator homolog 1 (CHAC1) to attenuate ferroptosis, and simultaneously suppressing PERK-eIF2α-ATF4 axis-mediated ER stress, thus alleviating APAP-induced ALI. However, PERK activator CCT020312 and overexpression of ATF4 inhibited the protective function of salidroside on CHAC1-mediated ferroptosis. Besides this, activation of the AMPK/SIRT1 signaling pathway by salidroside was demonstrated to have a protective effect against APAP-induced ALI. Interestingly, selective inhibition of SIRT1 ameliorated the protective effects of salidroside on ER stress and ferroptosis. Overall, salidroside plays a significant part in the mitigation of APAP-induced ALI by activating the AMPK/SIRT1 signaling to inhibit ER stress-mediated ferroptosis in the ATF4-CHAC1 axis.

18.
J Neurosci ; 43(40): 6760-6778, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37607820

RESUMEN

Unconscious acquisition of sequence structure from experienced events can lead to explicit awareness of the pattern through extended practice. Although the implicit-to-explicit transition has been extensively studied in humans using the serial reaction time (SRT) task, the subtle neural activity supporting this transition remains unclear. Here, we investigated whether frequency-specific neural signal transfer contributes to this transition. A total of 208 participants (107 females) learned a sequence pattern through a multisession SRT task, allowing us to observe the transitions. Session-by-session measures of participants' awareness for sequence knowledge were conducted during the SRT task to identify the session when the transition occurred. By analyzing time course RT data using switchpoint modeling, we identified an increase in learning benefit specifically at the transition session. Electroencephalogram (EEG)/magnetoencephalogram (MEG) recordings revealed increased theta power in parietal (precuneus) regions one session before the transition (pretransition) and a prefrontal (superior frontal gyrus; SFG) one at the transition session. Phase transfer entropy (PTE) analysis confirmed that directional theta transfer from precuneus → SFG occurred at the pretransition session and its strength positively predicted learning improvement at the subsequent transition session. Furthermore, repetitive transcranial magnetic stimulation (TMS) modulated precuneus theta power and altered transfer strength from precuneus to SFG, resulting in changes in both transition rate and learning benefit at that specific point of transition. Our brain-stimulation evidence supports a role for parietal → prefrontal theta signal transfer in igniting conscious awareness of implicitly acquired knowledge.SIGNIFICANCE STATEMENT There exists a pervasive phenomenon wherein individuals unconsciously acquire sequence patterns from their environment, gradually becoming aware of the underlying regularities through repeated practice. While previous studies have established the robustness of this implicit-to-explicit transition in humans, the refined neural mechanisms facilitating conscious access to implicit knowledge remain poorly understood. Here, we demonstrate that prefrontal activity, known to be crucial for conscious awareness, is triggered by neural signal transfer originating from the posterior brain region, specifically the precuneus. By employing brain stimulation techniques, we establish a causal link between neural signal transfer and the occurrence of awareness. Our findings unveil a mechanism by which implicit knowledge becomes consciously accessible in human cognition.


Asunto(s)
Concienciación , Aprendizaje , Femenino , Humanos , Concienciación/fisiología , Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Tiempo de Reacción/fisiología , Electroencefalografía
19.
Adv Mater ; 35(36): e2301310, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37196181

RESUMEN

The sluggish kinetics of oxygen reduction reaction (ORR) and unsatisfactory durability of Pt-based catalysts are severely hindering the commercialization of proton-exchange-membrane fuel cells (PEMFCs). In this work, the lattice compressive strain of Pt-skins imposed by Pt-based intermetallic cores is tailored for highly effective ORR through the confinement effect of the activated nitrogen-doped porous carbon (a-NPC). The modulated pores of a-NPC not only promote Pt-based intermetallics with ultrasmall size (average size of <4 nm), but also efficiently stabilizes intermetallic nanoparticles and sufficient exposure of active sites during the ORR process. The optimized catalyst (L12 -Pt3 Co@ML-Pt/NPC10 ) achieves excellent mass activity (1.72 A mgPt -1 ) and specific activity (3.49 mA cmPt -2 ), which are 11- and 15-fold that of commercial Pt/C, respectively. Besides, owing to the confinement effect of a-NPC and protection of Pt-skins, L12 -Pt3 Co@ML-Pt/NPC10 retains 98.1% mass activity after 30 000 cycles, and even 95% for 100 000 cycles, while Pt/C retains only 51.2% for 30 000 cycles. Rationalized by density functional theory, compared with other metals (Cr, Mn, Fe, and Zn), L12 -Pt3 Co closer to the top of "volcano" induces a more suitable compressive strain and electronic structure on Pt-skin, leading to an optimal oxygen adsorption energy and a remarkable ORR performance.

20.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37176994

RESUMEN

Nanomaterials with bone-mimicking characteristics and easily internalized by the cell could create suitable microenvironments in which to regulate the therapeutic effects of bone regeneration. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone injury repair. First, an overview of the hierarchical architecture from the macroscale to the nanoscale of natural bone is presented, as these bone tissue microstructures and compositions are the basis for constructing bone substitutes. Next, urgent clinical issues associated with bone injury that require resolution and the potential of nanomaterials to overcome them are discussed. Finally, nanomaterials are classified as inorganic or organic based on their chemical properties. Their basic characteristics and the results of related bone engineering studies are described. This review describes theoretical and technical bases for the development of innovative methods for repairing damaged bone and should inspire therapeutic strategies with potential for clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...