Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Biol Med (Maywood) ; 249: 10040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577707

RESUMEN

Regulatory T cells (Tregs) constitute a specialized subset of T cells with dual immunoregulatory and modulatory functions. Recent studies have reported that Tregs mediate immune responses and regulate the development and repair processes in non-lymphoid tissues, including bone and cardiac muscle. Additionally, Tregs facilitate the repair and regeneration of damaged lung tissues. However, limited studies have examined the role of Tregs in pulmonary development. This study aimed to evaluate the role of Tregs in pulmonary development by investigating the dynamic alterations in Tregs and their hallmark cellular factor Forkhead box P3 (Foxp3) at various stages of murine lung development and establishing a murine model of anti-CD25 antibody-induced Treg depletion. During the early stages of murine lung development, especially the canalicular and saccular stages, the levels of Treg abundance and expression of Foxp3 and transforming growth factor-ß (TGF-ß) were upregulated. This coincided with the proliferation period of alveolar epithelial cells and vascular endothelial cells, indicating an adaptation to the dynamic lung developmental processes. Furthermore, the depletion of Tregs disrupted lung tissue morphology and downregulated lung development-related factors, such as surfactant protein C (SFTPC), vascular endothelial growth factor A (VEGFA) and platelet endothelial cell adhesion molecule-1 (PECAM1/CD31). These findings suggest that Tregs promote murine lung development.


Asunto(s)
Linfocitos T Reguladores , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Pulmón/metabolismo , Factores de Transcripción Forkhead/metabolismo
2.
Toxicol Appl Pharmacol ; 470: 116547, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178933

RESUMEN

Daunorubicin (DNR-) induced cardiotoxicity seriously restricts its clinical application. Transient receptor potential cation channel subfamily C member 6 (TRPC6) is involved in multiple cardiovascular physiological and pathophysiological processes. However, the role of TRPC6 anthracycline-induced cardiotoxicity (AIC) remains unclear. Mitochondrial fragmentation greatly promotes AIC. TRPC6-mediated ERK1/2 activation has been shown to favor mitochondrial fission in dentate granule cells. The aim of the present study was to elucidate the effects of TRPC6 on daunorubicin- induced cardiotoxicity and identify the mechanisms associated with mitochondrial dynamics. The sparkling results showed that TRPC6 was upregulated in models in vitro and in vivo. TRPC6 knockdown protected cardiomyocytes from DNR-induced cell apoptosis and death. DNR largely facilitated mitochondrial fission, boosted mitochondrial membrane potential collapse and damaged debilitated mitochondrial respiratory function in H9c2 cells,these effects were accompanied by TRPC6 upregulation. siTRPC6 effectively inhibited these mitochondrial adverse aspects showing a positive unexposed effect on mitochondrial morphology and function. Concomitantly, ERK1/2-DRP1 which is related to mitochondrial fission was significantly activated with amplified phosphorylated forms in DNR-treated H9c2 cells. siTRPC6 effectively suppressed ERK1/2-DPR1 over activation, hinting at a potential correlation between TRPC6 and ERK1/2-DRP1 by which mitochondrial dynamics are possibly modulated in AIC. TRPC6 knockdown also raised the Bcl-2/Bax ratio, which may help to block mitochondrial fragmentation-related functional impairment and apoptotic signaling. These findings suggested an essential role of TRPC6 in AIC by intensifying mitochondrial fission and cell death via ERK1/2-DPR1, which could be a potential therapeutic target for AIC.


Asunto(s)
Daunorrubicina , Miocitos Cardíacos , Canal Catiónico TRPC6 , Animales , Ratas , Apoptosis , Cardiotoxicidad/metabolismo , Muerte Celular , Daunorrubicina/toxicidad , Dinaminas/metabolismo , Sistema de Señalización de MAP Quinasas , Dinámicas Mitocondriales , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6/metabolismo
3.
Opt Lett ; 35(20): 3381-3, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20967073

RESUMEN

We investigate heat generation in a Nd:YAG thin-disk laser composite with an undoped anti-amplified spontaneous emission (ASE) cap and a side ASE absorber under lasing and nonlasing conditions. The heat load unbalance in three different regions induces a large transverse temperature inhomogeneity under the nonlasing condition. The additional heat fraction generated by the concentration quenching is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...