Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(52): e202316336, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966337

RESUMEN

The achievement of significant photoluminescence (PL) in lanthanide ions (Ln3+ ) has primarily relied on host sensitization, where energy is transferred from the excited host material to the Ln3+ ions. However, this luminous mechanism involves only one optical antenna, namely the host material, which limits the accessibility of excitation wavelength-dependent (Ex-De) PL. Consequently, the wider application of Ln3+ ions in light-emitting devices is hindered. In this study, we present an organic-inorganic compound, (DMA)4 LnCl7 (DMA+ =[CH3 NH2 CH3 ]+ , Ln3+ =Ce3+ , Tb3+ ), which serves as an independent host lattice material for efficient Ex-De emission by doping it with trivalent antimony (Sb3+ ). The pristine (DMA)4 LnCl7 compounds exhibit high luminescence, maintaining the characteristic sharp emission bands of Ln3+ and demonstrating a high PL quantum yield of 90-100 %. Upon Sb3+ doping, the compound exhibits noticeable Ex-De emission with switchable colors. Through a detailed spectral study, we observe that the prominent energy transfer process observed in traditional host-sensitized systems is absent in these materials. Instead, they exhibit two independent emission centers from Ln3+ and Sb3+ , each displaying distinct features in luminous color and radiative lifetime. These findings open up new possibilities for designing Ex-De emitters based on Ln3+ ions.

2.
Adv Mater ; 35(33): e2302896, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37306654

RESUMEN

Metal halide perovskites show the capability of performing structural transformation, allowing the formation of functional heterostructures. Unfortunately, the elusive mechanism governing these transformations limits their technological application. Herein, the mechanism of 2D-3D structural transformation is unraveled as catalyzed by solvents. By combining a spatial-temporal cation interdiffusivity simulation with experimental findings, it is validated that, protic solvents foster the dissociation degree of formadinium iodide (FAI) via dynamic hydrogen bond, then the stronger hydrogen bond of phenylethylamine (PEA) cation with selected solvents compared to dissociated FA cation facilitates 2D-3D transformation from (PEA)2 PbI4 to FAPbI3 . It is discovered that, the energy barrier of PEA out-diffusion and the lateral transition barrier of inorganic slab are diminished. For 2D films the protic solvents catalyze grain centers (GCs) and grain boundaries (GBs) transforme into 3D phases and quasi-2D phases, respectively. While in the solvent-free case, GCs transform into 3D-2D heterostructures along the direction perpendicular to the substrate, and most GBs evolve into 3D phases. Finally, memristor devices fabricated using the transformed films uncover that, GBs composed of 3D phases are more prone to ion migration. This work elucidates the fundamental mechanism of structural transformation in metal halide perovskites, allowing their use to fabricate complex heterostructures.

3.
ACS Appl Mater Interfaces ; 15(23): 27853-27864, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37272377

RESUMEN

Defect passivation using two-dimensional (2D)-layered perovskites with organic spacers on 3D bulk perovskites has been proposed as an effective strategy to improve perovskite solar cell stability and efficiency. Specifically, fluorination of the organic spacers has been employed due to the resulting hydrophobic nature and the defect passivation characteristics. In addition to the type of functional groups attached to the spacer molecules, conformational changes of fluorine isomers on layered perovskites can provide an extended strategy to control a variety of opto-electrical properties related to the interlayer spacing. As a model system for the structural isomer of fluorinated spacers, meta-CF3 and para-CF3 groups anchored to phenethylammonium iodide (PEAI) spacer molecules are employed to synthesize 2D perovskites and to investigate their full potential as an interfacial modifier for perovskite solar cells. The fluorination position change leads to altered opto-electrical characteristics in layered perovskites. Although they possess identical functional groups, the different orientations of the functional groups used in the perovskite layer deposited on the 3D perovskite absorber result in distinct electrical properties of 2D/3D heterostructures due to dissimilar intermolecular interactions. The 2D perovskite with meta-CF3-PEAI spacers exhibits an enhancement of the charge transport in the out-of-plane orientation and an improved suppression of the trap states of 3D perovskites while also providing a more favorable energy alignment for efficient charge transfers. Theoretical simulations are consistent with the experimental results. The structural isomers of fluorination anchoring to spacer cations alter the structural configuration of the spacer as well as the interlayer spacing that can improve the performance and the stability of 2D/3D perovskite solar cells.

4.
Adv Mater ; 35(32): e2211806, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37226815

RESUMEN

Polycrystalline perovskite films fabricated on flexible and textured substrates often are highly defective, leading to poor performance of perovskite devices. Finding substrate-tolerant perovskite fabrication strategies is therefore paramount. Herein, this study shows that adding a small amount of Cadmium Acetate (CdAc2 ) in the PbI2 precursor solution results in nano-hole array films and improves the diffusion of organic salts in PbI2 and promotes favorable crystal orientation and suppresses non-radiative recombination. Polycrystalline perovskite films on the flexible substrate with ultra-long carrier lifetimes exceeding 6 µs are achieved. Eventually, a power conversion efficiency (PCE) of 22.78% is obtained for single-junction flexible perovskite solar cells (FPSCs). Furthermore, it is found that the strategy is also applicable for textured tandem solar cells. A champion PCE of 29.25% (0.5003 cm2 ) is demonstrated for perovskite/silicon tandem solar cells (TSCs) with CdAc2 . Moreover, the un-encapsulated TSCs maintains 109.78% of its initial efficiency after 300 h operational at 45 °C in a  nitrogen atmosphere. This study provides a facile strategy for achieving high-efficiency perovskite-based solar cells.

5.
ACS Appl Mater Interfaces ; 14(41): 46857-46865, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36149762

RESUMEN

Mixed-halide (Cl and Br) perovskite nanocrystals (NCs) are of particular interest because they hold great potential for use in high-efficiency blue light-emitting diodes (LEDs). Generally, mixed-halide compounds are obtained by either a one-step synthesis with simultaneous addition of both halide precursors or a postsynthetic anion exchange using the opposite halogen. However, both strategies fail to prevent the formation of deep-level Cl vacancy defects, rendering the photoluminescence quantum yields (PLQYs) typically lower than 30%. Here, by optimizing both thermodynamic and kinetic processes, we devise a two-step hot-injection approach, which simultaneously realizes Cl vacancy filling and efficient anion exchange between Cl- and Br-. Both the identity of Br precursors and their injection temperature are revealed to be critical in transforming those highly defective CsPbCl3 NCs to defect-free CsPb(Cl/Br)3. The optimally synthesized NCs exhibit a saturated blue emission at ∼460 nm with a near-unity PLQY and a narrow emission bandwidth of 18 nm, which represents one of the most efficient blue emitters reported so far. The turn-on voltage of the ensuing LEDs is ∼4.0 V, which is lower than those of most other mixed-halide perovskites. In addition, LEDs exhibit a stable electroluminescence peak at 460 nm under a high bias voltage of 8.0 V. We anticipate that our findings will provide new insights into the materials design strategies for producing high-optoelectronic-quality Cl-containing perovskites.

6.
Adv Sci (Weinh) ; 9(31): e2203596, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36068152

RESUMEN

Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2 AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+ )-based metal halide MA2 CuCl3 (MA = CH3 NH3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2 CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2 CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2 CuCl3 has a great potential for the single-component indoor lighting and display applications.

7.
Nano Lett ; 22(2): 636-643, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35019656

RESUMEN

The three-precursors approach has proven to be advantageous for obtaining high-quality metal halide perovskite nanocrystals (PNCs). However, the current halide precursors of choice are mainly limited to those highly toxic organohalides, being unfavorable for large-scale and sustainable use. Moreover, most of the resulting PNCs still suffer from low quality in terms of photoluminescence quantum yield (PLQY). Herein we present all-inorganic germanium salts, GeX4 (X = Cl, Br, I), serving as robust and less hazardous alternatives that are capable of ensuring improved material properties for both Pb-based and Pb-free PNCs. Importantly, unlike most of the other inorganic halide sources, the GeX4 compound does not deliver the Ge element into the final compositions, whereas the PLQY and phase stability of the resulting nanocrystals are significantly improved. Theoretical calculations suggest that Ge halide precursors provide favorable conditions in both dielectric environment and thermodynamics, which jointly contribute to the formation of size-confined defect-suppressed nanoparticles.

8.
J Mater Chem A Mater ; 9(20): 12087-12098, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-34123383

RESUMEN

Narrow-bandgap CsSn x Pb1-x I3 perovskite quantum dots (QDs) show great promise for optoelectronic applications owing to their reduced use of toxic Pb, improved phase stability, and tunable band gaps in the visible and near-infrared range. The use of small ions has been proven beneficial in enhancing the stability and photoluminescence quantum yield (PLQY) of perovskite QDs. The introduction of sodium (Na) has succeeded in boosting the PLQY of CsSn0.6Pb0.4I3 QDs. Unfortunately, the initial PLQY of the Na-doped QDs undergoes a fast degradation after one-day storage in solution, hindering their practical applications. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations, we study the effect of Na ions on the strength of surface bonds, defect formation energies, and the interactions between surface ligands and perovskite QDs. Our results suggest that Na ions enhance the covalent bonding of surface tin-iodine bonds and form strong ionic bonding with the neighboring iodine anions, thus suppressing the formation of I and Sn vacancies. Furthermore, Na ions also enhance the binding strength of the surface ligands with the perovskite QD surface. However, according to our AIMD simulations, the enhanced surface ligand binding is only effective on a selected surface configuration. While the position of Na ions remains intact on a CsI-terminated surface, they diffuse vigorously on an MI2-terminated surface. As a result, the positive effect of Na vanishes with time, explaining the relatively short lifetime of the experimentally obtained high PLQYs. Our results indicate that engineering the surface termination of the QDs could be the next step in maintaining the favorable effect of Na doping for a high and stable PLQY of Sn-Pb QDs.

9.
ACS Appl Mater Interfaces ; 13(21): 25121-25136, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34008948

RESUMEN

Transition metal chalcogenides (TMCs) have gained worldwide interest owing to their outstanding renewable energy conversion capability. However, the poor mechanical flexibility of most existing TMCs limits their practical commercial applications. Herein, triggered by the recent and imperative synthesis of highly ductile α-Ag2S, an effective approach based on evolutionary algorithm and ab initio total-energy calculations for determining stable, ductile phases of bulk and two-dimensional AgxSe1-x and AgxTe1-x compounds was implemented. The calculations correctly reproduced the global minimum bulk stoichiometric P212121-Ag8Se4 and P21/c-Ag8Te4 structures. Recently reported metastable AgTe3 was also revealed but it lacks dynamical stability. Further single-layered screening unveiled two new monolayer P4/nmm-Ag4Se2 and C2-Ag8Te4 phases. Orthorhombic Ag8Se4 crystalline has a narrow, direct band gap of 0.26 eV that increases to 2.68 eV when transforms to tetragonal Ag4Se2 monolayer. Interestingly, metallic P21/c-Ag8Te4 changes to semiconductor when thinned down to monolayer, exhibiting a band gap of 1.60 eV. Present findings confirm their strong stability from mechanical and thermodynamic aspects, with reasonable Vickers hardness, bone-like Young's modulus (E) and high machinability observed in bulk phases. Detailed analysis of the dielectric functions ε(ω), absorption coefficient α(ω), power conversion efficiency (PCE) and refractive index n(ω) of monolayers are reported for the first time. Fine theoretical PCE (SLME method ∼11-28%), relatively high n(0) (1.59-1.93), and sizable α(ω) (104-105 cm-1) that spans the infrared to visible regions indicate their prospects in optoelectronics and photoluminescence applications. Effective strategies to improve the temperature dependent power factor (PF) and figure of merit (ZT) are illustrated, including optimizing the carrier concentration. With decreasing thickness, ZT of p-doped Ag-Se was found to rise from approximately 0.15-0.90 at 300 K, leading to a record high theoretical conversion efficiency of ∼12.0%. The results presented foreshadow their potential application in a hybrid device that combines the photovoltaic and thermoelectric technologies.

10.
Angew Chem Int Ed Engl ; 59(22): 8421-8424, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32134170

RESUMEN

Phase-stable CsSnx Pb1-x I3 perovskite quantum dots (QDs) hold great promise for optoelectronic applications owing to their strong response in the near-infrared region. Unfortunately, optimal utilization of their potential is limited by the severe photoluminescence (PL) quenching, leading to extremely low quantum yields (QYs) of approximately 0.3 %. The ultra-low sodium (Na) doping presented herein is found to be effective in improving PL QYs of these alloyed QDs without alerting their favourable electronic structure. X-ray photoelectron spectroscopy (XPS) studies suggest the formation of a stronger chemical interaction between I- and Sn2+ ions upon Na doping, which potentially helps to stabilize Sn2+ and suppresses the formation of I vacancy defects. The optimized PL QY of the Na-doped QDs reaches up to around 28 %, almost two orders of magnitude enhancement compared with the pristine one.

11.
Nat Commun ; 10(1): 2560, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189871

RESUMEN

Metal halide perovskites are promising materials for future optoelectronic applications. One intriguing property, important for many applications, is the tunability of the band gap via compositional engineering. While experimental reports on changes in absorption or photoluminescence show rather good agreement for different compounds, the physical origins of these changes, namely the variations in valence and conduction band positions, are not well characterized. Here, we determine ionization energy and electron affinity values of all primary tin- and lead-based perovskites using photoelectron spectroscopy data, supported by first-principles calculations and a tight-binding analysis. We demonstrate energy level variations are primarily determined by the relative positions of the atomic energy levels of metal cations and halide anions and secondarily influenced by the cation-anion interaction strength. These results mark a significant step towards understanding the electronic structure of this material class and provides the basis for rational design rules regarding the energetics in perovskite optoelectronics.

12.
J Phys Chem C Nanomater Interfaces ; 122(31): 17660-17667, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30116464

RESUMEN

Because of its thermal stability, lead-free composition, and nearly ideal optical and electronic properties, the orthorhombic CsSnI3 perovskite is considered promising as a light absorber for lead-free all-inorganic perovskite solar cells. However, the susceptibility of this three-dimensional perovskite toward oxidation in air has limited the development of solar cells based on this material. Here, we report the findings of a computational study which identifies promising Rb y Cs1-y Sn(Br x I1-x )3 perovskites for solar cell applications, prepared by substituting cations (Rb for Cs) and anions (Br for I) in CsSnI3. We show the evolution of the material electronic structure as well as its thermal and structural stabilities upon gradual substitution. Importantly, we demonstrate how the unwanted yellow phase can be suppressed by substituting Br for I in CsSn(Br x I1-x )3 with x ≥ 1/3. We predict that substitution of Rb for Cs results in a highly homogeneous solid solution and therefore an improved film quality and applicability in solar cell devices.

13.
Nanoscale ; 9(9): 2992-3001, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28098300

RESUMEN

Ferromagnetic character and biocompatible properties have become key factors for developing next-generation spintronic devices and show potential in biomedical applications. Unfortunately, the Mn-containing monolayer is not biocompatible though it has been extensively studied, and the Cr-containing monolayer is not environmental friendly, although these monolayers are ferromagnetic. Herein, we systematically investigated new types of 2D ferromagnetic monolayers Nb3X8 (X = Cl, Br or I) by means of first principles calculations together with mean field approximation based on the classical Heisenberg model. The small cleavage energy and high in-plane stiffness have been calculated to evaluate the feasibility of exfoliating the monolayers from their layered bulk phase. Spin-polarized calculations together with self-consistently determined Hubbard U were utilized to assess a strong correlation energy, which demonstrated that Nb3X8 (X = Cl, Br or I) monolayers are ferromagnetic. The calculated Curie temperatures for Nb3Cl8, Nb3Br8 and Nb3I8 were 31, 56 and 87 K, respectively, which may be increased by external strain, or electron or hole doping. Moreover, the Nb3X8 (X = Cl, Br or I) monolayers exhibited strong visible and infrared light absorption. The biocompatibility, ferromagnetism and considerable visible and infrared light absorption render the Nb3X8 (X = Cl, Br or I) monolayers with great potential application in next-generation biocompatible spintronic and optoelectronic devices.

14.
Phys Chem Chem Phys ; 18(24): 16302-9, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27253913

RESUMEN

The structural, electronic and optical properties of the graphene hybrid with stanene, the tin counterpart of graphene, are investigated by means of density functional calculation with the observation of band gap opening and enhanced visible light response. The lattice mismatch between graphene and stanene is taken into consideration and several stacking methods for model construction are proposed to study the possible effects. The Dirac feature can be observed in this bilayer system with relatively stronger interlayer interaction than weak van der Waals forces, which is ascribed to the unsaturated p orbital of stanene. Despite the mutual semi-metal nature of graphene and stanene, it is significant to note a band gap opening and the electrical neutrality of the bilayer. The combination of high carrier mobility of graphene and the excellent spin Hall effect of stanene is expected to coexist in the bilayer structure. In addition, we found that the stanene monolayer has a relatively lower work function than graphene and more importantly, it exhibits more pronounced optical absorption than graphene. The results indicate that a graphene/stanene heterobilayer will facilitate the performance of stanene related spintronic devices and is therefore a good candidate for photoelectronic devices.

15.
Phys Chem Chem Phys ; 18(24): 16386-95, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27265511

RESUMEN

Using density functional theory calculations with van der Waals correction, we show that the electronic properties (band gap and carrier mobility) and work functions of graphane/fully hydrogenated hexagonal boron nitride (G/fHBN) heterobilayers can be favorably tuned via heteronuclear dihydrogen bonding (C-HH-B and C-HH-N) and an external electric field. Our results reveal that G/fHBN heterobilayers have different direct band gaps of ∼1.2 eV and ∼3.5 eV for C-HH-B and C-HH-N bonds, respectively. In particular, these band gaps can be effectively modulated by altering the direction and strength of the external electric field (E-field), and correspondingly exhibit a semiconductor-metal transition. The conformation and stability of G/fHBN heterobilayers show a strong dependence on the heteronuclear dihydrogen bonding. Fantastically, these bonds are stable enough under a considerable external E-field as compared with other van der Waals (vdW) 2D layered materials. The mobilities of G/fHBN heterobilayers we predicted are hole-dominated, reasonably high (improvable up to 200 cm(2) V(-1) s(-1)), and extremely isotropic. We also demonstrate that the work function of G/fHBN heterobilayers is very sensitive to the external E-field and is extremely low. These findings make G/fHBN heterobilayers very promising materials for field-effect transistors and light-emitting devices, and inspire more efforts in the development of 2D material systems using weak interlayer interactions and electric field control.

16.
Phys Chem Chem Phys ; 18(24): 16229-36, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27250915

RESUMEN

Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.

17.
Sensors (Basel) ; 16(5)2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27128921

RESUMEN

A hybrid quantum mechanics (QM)/molecular dynamics (MD) simulation is performed to investigate the effect of an ionizable group (-SO3(-)Na⁺) on polyaniline as gas sensing materials. Polymers considered for this work include emeraldine base of polyaniline (EB-PANI) and its derivatives (Na-SPANI (I), (II) and (III)) whose rings are partly monosubstituted by -SO3(-)Na⁺. The hybrid simulation results show that the adsorption energy, Mulliken charge and band gap of analytes (CO2 and H2O) in polyaniline are relatively sensitive to the position and the amounts of -SO3(-)Na⁺, and these parameters would affect the sensitivity of Na-SPANI/EB-PANI towards CO2. The sensitivity of Na-SPANI (III)/EB-PANI towards CO2 can be greatly improved by two orders of magnitude, which is in agreement with the experimental study. In addition, we also demonstrate that introducing -SO3(-)Na⁺ groups at the rings can notably affect the gas transport properties of polyaniline. Comparative studies indicate that the effect of ionizable group on polyaniline as gas sensing materials for the polar gas molecule (H2O) is more significant than that for the nonpolar gas molecule (CO2). These findings contribute in the functionalization-induced variations of the material properties of polyaniline for CO2 sensing and the design of new polyaniline with desired sensing properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...