Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(6): 1623-1635, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306470

RESUMEN

Metal halide perovskites have garnered significant attention in the scientific community for their promising applications in optoelectronic devices. The application of pressure engineering, a viable technique, has played a crucial role in substantially improving the optoelectronic characteristics of perovskites. Despite notable progress in understanding ground-state structural changes under high pressure, a comprehensive exploration of excited-state dynamics influencing luminescence remains incomplete. This Perspective delves into recent advances in time-resolved dynamics studies of photoexcited metal halide perovskites under high pressure. With a focus on the intricate interplay between structural alterations and electronic properties, we investigate electron-phonon interactions, carrier transport mechanisms, and the influential roles of self-trapped excitons (STEs) and coherent phonons in luminescence. However, significant challenges persist, notably the need for more advanced measurement techniques and a deeper understanding of the phenomena induced by high pressure in perovskites.

2.
J Phys Chem Lett ; 14(30): 6880-6887, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37493548

RESUMEN

Remote optical sensing with nondestructive, fast, and accurate detection capabilities is a powerful noncontact method widely used in natural, industrial, and biological fields. In this work, Cs2NaErCl6 double perovskite was synthesized via a hydrothermal method. The pressure-dependent photoluminescence (PL) lifetime of Er3+ in the range of 0-20 GPa was investigated, demonstrating its potential for pressure monitoring. The high-pressure relative sensitivity (SR) is ∼18.45% GPa-1. Temperature measurements were conducted using the fluorescence intensity ratio (FIR) of the thermal couple energy level (TCEL) and the nonthermal couple energy level (NTCEL) of Er3+ across a temperature range of 100-660 K, with a maximum SR of 5.36% K-1. By combining MXene with Cs2NaErCl6 and recording the FIR of Cs2NaErCl6 under 1550 nm excitation, the photothermal conversion temperature of MXene can be accurately determined. These findings highlight the potential of Cs2NaErCl6 for remote pressure and temperature sensing, particularly in the biomedical field.

3.
J Phys Chem Lett ; 13(44): 10395-10403, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36318176

RESUMEN

Alloying has emerged as a new strategy to tune the function of 2D transition metal dichalcogenides (TMDCs). However, the lack of research on the electrical and structural properties of these alloys limits their practical applications. Here, femtosecond transient absorption spectroscopy with pump pulse tunability is performed to elucidate the ultrafast carrier dynamics in the few-layer Mo0.5W0.5S2 prepared by the liquid phase exfoliation method. An anomalous rebleaching of the ground state is observed at high pump fluence by 3.1 eV excitation. We ascribe this rebleaching of the ground state to the mechanism that the carriers trapped in the defect are thermally excited back to the untrapped exciton state due to the phonon recycling, which hinders the dissipation of nonradiative energy, through comparative experiments and global analysis. Our findings demonstrate a novel energy transfer channel assisted by defect in few-layer TMDCs which is critical for their advanced applications.

4.
J Phys Chem Lett ; 13(41): 9736-9744, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36222621

RESUMEN

This study has investigated the microscopic mechanisms of ultralow lattice thermal conductivity by the first-principles density functional theory. By solving the phonon Boltzmann equation iteratively, we find that the thermal conductivity of the lattice is abnormally low and that glass like heat transfer behavior occurs. Therefore, in addition to the contribution about the particle-like propagation to heat transport, the off-diagonal elements of the heat-flux operator through wave-like interbranch tunneling of phonon modes are also considered. The results provided new insights into the minimum thermal conductivity (κL) for Cs2SnBr6 (0.17 W m-1 K-1 at 450 K). It was also found that polar optical phonon scattering severely affects carrier lifetime. In addition, an impressive thermoelectric figure of merit of 0.55 at 450 K for Cs2SnBr6 was obtained in the case of doping p-type carriers. The study helps us understand the ultralow κL in complex crystals with strong anharmonicity and find that Cs2SnBr6 is a new and promising thermoelectric material.

5.
J Phys Chem Lett ; 12(30): 7285-7292, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34319111

RESUMEN

Understanding the relationships between the structure and the properties in lead-free double perovskites is significant for their applications in the optoelectronic field. Here the nonluminous Cs2NaBiCl6 crystal exhibits an unexpected broadband dual-color emission as the external pressure is increased to 6.77 GPa. The emission intensity is remarkably enhanced with further compression to 8.50 GPa. By analyzing the results of in situ high-pressure experiments and the density functional theory, we conclude that the dual-color emission is attributed to singlet self-trapped excitons (STEs) and triplet STEs, respectively. This phenomenon originates from the tilting and twisting of [BiCl6]3- caused by the transition of cubic Cs2NaBiCl6 to the tetragonal phase. Notably, the transformation between the dark and bright STEs in the Cs2NaBiCl6 crystal is demonstrated by ultrafast transient absorption experiments under different pressures. This work not only offers deep insight into the structure-property relationship in lead-free double perovskites but also opens the door for the design of new lead-free double perovskites.

6.
Nanoscale Horiz ; 5(8): 1233-1239, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32478357

RESUMEN

Piezochromic materials alter their photoluminescent (PL) colors in response to the action of external force. Such materials have attracted much attention owing to their promising applications in pressure-sensing, optoelectronic memory and anticounterfeiting. However, almost all the reported piezochromic materials were limited to the organic matters or compounds containing organic components. Here we present piezochromic materials and pressure-induced optical response based on all-inorganic core/shell InP/ZnS nanocrystals (NCs). The InP/ZnS NCs exhibit noticeable PL color changes, shifting from orange (2.08 eV) to green (2.25 eV), with the PL intensity showing slight enhancement below an applied pressure of 2.5 GPa. Further compressing to fluorescence quenching produces an ultrabroad energy tenability range up to 400 meV. Structural and time-resolved PL lifetime studies, together with first-principle calculations, reveal the weakening of strain-induced defect states in the low pressure regime, which contributes to effective excition recombination, thus ensuring high fluorescence emission of InP/ZnS NCs. This work provides a promising strategy to prepare piezochromic materials of all-inorganic semiconductors, thereby greatly increasing the choice of materials for new applications.

7.
Chem Commun (Camb) ; 54(87): 12302-12305, 2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30234868

RESUMEN

A series of CsPbBrxI3-x NC glasses, showing tunable emission (523-693 nm) controlled by different ratios of Br- and I-, were successfully prepared. The CsPbBrxI3-x NC glasses exhibited excellent optical properties and outstanding stability towards ambient conditions, water and heat.

8.
Sci Rep ; 8(1): 9521, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934567

RESUMEN

Since nonlinear optical materials used in the ultrafast all-optical switching is an important part for the modern optical technology, cuprates have been widely investigated for their specific Cu-O chain structure and intriguing optical properties. We present a new preparation method of microcrystalline Sr2CuO3 glass films on glass substrates combining spin-coating and co-sintering techniques. Then, the as-prepared samples were polished for different times to obtain microcrystalline Sr2CuO3 glass films with varying thickness. The influence of polishing time on the structure, the valence state and the nonlinear optical response were discussed, respectively. The purity of the Sr2CuO3 phase, surface morphology and the chemical composites of these synthesized glass films were given with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Importantly, optical absorption spectroscopy and Z-scan technique were used to measure linear absorption and third-order optical nonlinearity of the films. The experiments showed that third-order nonlinear susceptibility of the 140 min polished film sample with a thickness of 18 µm was up to 1.23 × 10-12 esu, indicating its potential application in the nonlinear field.

9.
Nanoscale ; 9(45): 17849-17858, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29116274

RESUMEN

The first use of the combination of ammonium citrate (AC) and ethylenediamine tetraacetic acid (EDTA) as coordinating precursors for the synthesis of highly fluorescent (quantum yield = 67%) multicolour nitrogen-doped carbon dots (CDs) is reported. Under UV light, these CDs emitted outstanding luminescence in colours from dark blue to red. Interestingly, a single component white-light CD point with high fluorescence efficiency was obtained by surface control. Alterations of the photoluminescence (PL) emission of these full-colour CDs were tentatively proposed to benefit from surface functional groups, such as C[double bond, length as m-dash]O and C[double bond, length as m-dash]N. An energy-level model was proposed to explain the continuously adjustable full-colour emission. The white light may be attributed to the overlap of diverse light emission induced by electron transitions between the energy levels. Subsequently, to avoid aggregation-induced solid-state fluorescence quenching, multicolour CD-based sandwich glasses with various colour emission was fabricated, which is anticipated to be compatible with the all-optical light-emitting diodes (LEDs). The facile preparation and outstanding optical features are believed to provide an alternative synthesis route and inspire more research into applications and CD-based materials of multicolour CDs.

10.
Chem Commun (Camb) ; 53(80): 11068-11071, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28948243

RESUMEN

We report the synthesis of CsPbBr3 QDs with great stability and high quantum yield in phospho-silicate glass, which was fabricated by using a heat-treatment approach, for white light emitting devices. QD glasses exhibited excellent photo- and thermal stability, and significantly prolonged the lifetime of light emitters under ambient air conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...