Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroimage ; : 120856, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299662

RESUMEN

The interplay between personality traits and impulsivity has long been a central theme in psychology and psychiatry. However, the potential association between Greed Personality Traits (GPT) and impulsivity, encompassing both trait and state impulsivity and future time perspective, remains largely unexplored. To address these issues, we employed questionnaires and an inter-temporal choice task to estimate corresponding trait/state impulsivity and collected multi-modal neuroimaging data (resting-state functional imaging: n = 430; diffusion-weighted imaging: n = 426; task-related functional imaging: n = 53) to investigate the underlying microstructural and functional substrates. Behavioral analyses revealed that GPT mediated the association between time perspective (e.g., present fatalism) and trait impulsivity (e.g., motor impulsivity). Functional imaging analyses further identified that brain activation strengths and patterns related to delay length, particularly in the dorsomedial prefrontal cortex, superior parietal lobule, and cerebellum, were associated with GPT. Moreover, individuals with similar levels of greed exhibited analogous spontaneous brain activity patterns, predominantly in the Default Mode Network (DMN), Fronto-Parietal Network (FPN), and Visual Network (VIS). Diffusion imaging analysis observed specific microstructural characteristics in the spinocerebellar/pontocerebellar fasciculus, internal/external capsule, and corona radiata that support the formation of GPT. Furthermore, the corresponding neural activation pattern, spontaneous neural activity pattern, and analogous functional couplings among the aforementioned brain regions mediated the relationships between time perspective and GPT and between GPT and motor impulsivity. These findings provide novel insights into the possible pathway such as time perspective → dispositional greed → impulsivity and uncover their underlying microstructural and functional substrates.

2.
Hum Brain Mapp ; 45(11): e26808, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126347

RESUMEN

Numerous neuroimaging studies have identified significant individual variability in intertemporal choice, often attributed to three neural mechanisms: (1) increased reward circuit activity, (2) decreased cognitive control, and (3) prospection ability. These mechanisms that explain impulsivity, however, have been primarily studied in the gain domain. This study extends this investigation to the loss domain. We employed a hierarchical Bayesian drift-diffusion model (DDM) and the inter-subject representational similarity approach (IS-RSA) to investigate the potential computational neural substrates underlying impulsivity in loss domain across two experiments (n = 155). These experiments utilized a revised intertemporal task that independently manipulated the amounts of immediate and delayed-loss options. Behavioral results demonstrated positive correlations between the drift rate, measured by the DDM, and the impulsivity index K in Exp. 1 (n = 97) and were replicated in Exp. 2 (n = 58). Imaging analyses further revealed that the drift rate significantly mediated the relations between brain properties (e.g., prefrontal cortex activations and gray matter volume in the orbitofrontal cortex and precuneus) and K in Exp. 1. IS-RSA analyses indicated that variability in the drift rate also mediated the associations between inter-subject variations in activation patterns and individual differences in K. These findings suggest that individuals with similar impulsivity levels are likely to exhibit similar value processing patterns, providing a potential explanation for individual differences in impulsivity within a loss framework.


Asunto(s)
Conducta Impulsiva , Individualidad , Imagen por Resonancia Magnética , Humanos , Conducta Impulsiva/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Mapeo Encefálico , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Teorema de Bayes , Descuento por Demora/fisiología
3.
Neuroimage ; 297: 120690, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880309

RESUMEN

A fundamental question in the study of happiness is whether there is neural evidence to support a well-known hypothesis that happy people are always similar while unfortunate people have their own misfortunes. To investigate this, we employed several happiness-related questionnaires to identify potential components of happiness, and further investigated and confirmed their associations with personality, mood, aggressive behaviors, and amygdala reactivity to fearful faces within a substantial sample size of college students (n = 570). Additionally, we examined the functional and morphological similarities and differences among happy individuals using the inter-subject representational similarity analysis (IS-RSA). IS-RSA emphasizes the geometric properties in a high-dimensional space constructed by brain or behavioral patterns and focuses on individual subjects. Our behavioral findings unveiled two factors of happiness: individual and social, both of which mediated the effect of personality traits on individual aggression. Subsequently, mood mediated the impact of happiness on aggressive behaviors across two subgroup splits. Functional imaging data revealed that individuals with higher levels of happiness exhibited reduced amygdala reactivity to fearful faces, as evidenced by a conventional face-matching task (n = 104). Moreover, IS-RSA demonstrated that these participants manifested similar neural activation patterns when processing fearful faces within the visual pathway, but not within the emotional network (e.g., amygdala). Morphological observations (n = 425) indicated that individuals with similar high happiness levels exhibited comparable gray matter volume patterns within several networks, including the default mode network, fronto-parietal network, visual network, and attention network. Collectively, these findings offer early neural evidence supporting the proposition that happy individuals may share common neural characteristics.


Asunto(s)
Encéfalo , Expresión Facial , Felicidad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Reconocimiento Facial/fisiología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/anatomía & histología , Personalidad/fisiología , Afecto/fisiología , Miedo/fisiología , Agresión/fisiología , Adolescente , Mapeo Encefálico/métodos
4.
Cancer Cell Int ; 24(1): 204, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858669

RESUMEN

BACKGROUND: Aberrant Derlin-1 (DERL1) expression is associated with an overactivation of p-AKT, whose involvement in breast cancer (BRCA) development has been widely speculated. However, the precise mechanism that links DERL1 expression and AKT activation is less well-studied. METHODS: Bioinformatic analyses hold a promising approach by which to detect genes' expression levels and their association with disease prognoses in patients. In the present work, a dual-luciferase assay was employed to investigate the relationship between DERL1 expression and the candidate miRNA by both in vitro and in vivo methods. Further in-depth studies involving immunoprecipitation-mass spectrum (IP-MS), co-immunoprecipitation (Co-IP), as well as Zdock prediction were performed. RESULTS: Overexpression of DERL1 was detected in all phenotypes of BRCA, and its knockdown showed an inhibitory effect on BRCA cells both in vitro and in vivo. The Cancer Genome Atlas (TCGA) database reported that DERL1 overexpression was correlated with poor overall survival in BRCA cases, and so the quantification of DERL1 expression could be a potential marker for the clinical diagnosis of BRCA. On the other hand, miR-181c-5p was downregulated in BRCA, suggesting that its overexpression could be a potent therapeutic route to improve the overall survival of BRCA cases. Prior bioinformatic analyses indicated a somewhat positive correlation between DERL1 and TRAF6 as well as between TRAF6 and AKT, but not between miR-181c-5p and DERL1. In retrospect, DERL1 overexpression promoted p-AKT activation through K63 ubiquitination. DERL1 was believed to directly interact with the E3 ligase TRAF6. As Tyr77Ala or Tyr77Ala/Gln81Ala/Arg85Ala/Val158Ala attempts to prevent the interaction between DERL1 and TRAF domain of TRAF6, resulted in a significant reduction in K63-ubiquitinated p-AKT production. However, mutations in Gln81Ala, Arg85Ala, or Val158Ala could possibly interrupt with these processes. CONCLUSIONS: Our data confirm that mediation of the miR-181c-5p/DERL1 pathway by TRAF6-linked AKT K63 ubiquitination holds one of the clues to set our focus on toward meeting the therapeutic goals of BRCA.

5.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38584086

RESUMEN

Machine learning is an emerging tool in clinical psychology and neuroscience for the individualized prediction of psychiatric symptoms. However, its application in non-clinical populations is still in its infancy. Given the widespread morphological changes observed in psychiatric disorders, our study applies five supervised machine learning regression algorithms-ridge regression, support vector regression, partial least squares regression, least absolute shrinkage and selection operator regression, and Elastic-Net regression-to predict anxiety and depressive symptom scores. We base these predictions on the whole-brain gray matter volume in a large non-clinical sample (n = 425). Our results demonstrate that machine learning algorithms can effectively predict individual variability in anxiety and depressive symptoms, as measured by the Mood and Anxiety Symptoms Questionnaire. The most discriminative features contributing to the prediction models were primarily located in the prefrontal-parietal, temporal, visual, and sub-cortical regions (e.g. amygdala, hippocampus, and putamen). These regions showed distinct patterns for anxious arousal and high positive affect in three of the five models (partial least squares regression, support vector regression, and ridge regression). Importantly, these predictions were consistent across genders and robust to demographic variability (e.g. age, parental education, etc.). Our findings offer critical insights into the distinct brain morphological patterns underlying specific components of anxiety and depressive symptoms, supporting the existing tripartite theory from a neuroimaging perspective.


Asunto(s)
Depresión , Sustancia Gris , Humanos , Masculino , Femenino , Sustancia Gris/diagnóstico por imagen , Depresión/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ansiedad/diagnóstico por imagen , Ansiedad/psicología , Afecto
6.
Nat Commun ; 15(1): 1685, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402239

RESUMEN

The cargo content in small extracellular vesicles (sEVs) changes under pathological conditions. Our data shows that in obesity, extracellular matrix protein 1 (ECM1) protein levels are significantly increased in circulating sEVs, which is dependent on integrin-ß2. Knockdown of integrin-ß2 does not affect cellular ECM1 protein levels but significantly reduces ECM1 protein levels in the sEVs released by these cells. In breast cancer (BC), overexpressing ECM1 increases matrix metalloproteinase 3 (MMP3) and S100A/B protein levels. Interestingly, sEVs purified from high-fat diet-induced obesity mice (D-sEVs) deliver more ECM1 protein to BC cells compared to sEVs from control diet-fed mice. Consequently, BC cells secrete more ECM1 protein, which promotes cancer cell invasion and migration. D-sEVs treatment also significantly enhances ECM1-mediated BC metastasis and growth in mouse models, as evidenced by the elevated tumor levels of MMP3 and S100A/B. Our study reveals a mechanism and suggests sEV-based strategies for treating obesity-associated BC.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Animales , Ratones , Proteínas de la Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Integrinas , Metaloproteinasa 3 de la Matriz/genética , Obesidad
7.
Behav Brain Funct ; 19(1): 21, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041182

RESUMEN

This study explored whether amygdala reactivity predicted the greed personality trait (GPT) using both task-based and resting-state functional connectivity analyses (ntotal = 452). In Cohort 1 (n = 83), task-based functional magnetic resonance imaging (t-fMRI) results from a region-of-interest (ROI) analysis revealed no direct correlation between amygdala reactivity to fearful and angry faces and GPT. Instead, whole-brain analyses revealed GPT to robustly negatively vary with activations in the right ventromedial prefrontal cortex (vmPFC), supramarginal gyrus, and angular gyrus in the contrast of fearful + angry faces > shapes. Moreover, task-based psychophysiological interaction (PPI) analyses showed that the high GPT group showed weaker functional connectivity of the vmPFC seed with a top-down control network and visual pathways when processing fearful or angry faces compared to their lower GPT counterparts. In Cohort 2, resting-state functional connectivity (rs-FC) analyses indicated stronger connectivity between the vmPFC seed and the top-down control network and visual pathways in individuals with higher GPT. Comparing the two cohorts, bilateral amygdala seeds showed weaker associations with the top-down control network in the high group via PPI analyses in Cohort 1. Yet, they exhibited distinct rs-FC patterns in Cohort 2 (e.g., positive associations of GPT with the left amygdala-top-down network FC but negative associations with the right amygdala-visual pathway FC). The study underscores the role of the vmPFC and its functional connectivity in understanding GPT, rather than amygdala reactivity.


Asunto(s)
Mapeo Encefálico , Emociones , Humanos , Emociones/fisiología , Mapeo Encefálico/métodos , Corteza Prefrontal/diagnóstico por imagen , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Imagen por Resonancia Magnética , Personalidad , Vías Nerviosas/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA