Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 344: 123404, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244901

RESUMEN

Antibiotics are causing widespread concern as one of the emerging contaminants. There is the abuse of antibiotics in high-density open aquaculture, and the tailwater is often discharged into surrounding rivers. At the same time, the water replenishment of open aquaculture ponds from nearby rivers containing antibiotic contamination from different sources may result in cross-contamination. However, it is still unclear which pollution intensity is greater in rivers or in open aquaculture. So in this paper, the levels of 20 antibiotics (i.e., Fluoroquinolones (FQs), Sulfonamides (SAs), Tetracyclines (TCs), Macrolides (MLs) and Lincosamides (LCs)) in rivers and high-density open aquaculture ponds were investigated in the Baini River basin in the suburbs of Guangzhou, China. The results showed that norfloxacin (NFX) was the predominant antibiotic in river and aquaculture water, with concentrations ranging from 6.12 to 156.04 ng/L and from 7.47 to 82.62 ng/L in both aquatic systems, respectively. As for the pollution intensity of antibiotics, the annual pollution contribution (28.64 kg/a) of the river water supply to open aquaculture is higher than that (10.81 kg/a) of open aquaculture to the river, which means river pollution has a greater impact on aquaculture ponds. The risk quotient (RQ) showed that the ecological risk of lincomycin (LIN), erythromycin (ERY), sulfamethoxazole (SMX), norfloxacin (NFX), ciprofloxacin (CFX) and chlortetracycline (CTC) in rivers and aquaculture environments had high ecological risks from 1.21 to 1.81. Water interactions with contaminated rivers will result in a corresponding increase in the ecological risk of antibiotics in the aquaculture environment. Overall, according to the results, the risk of polluted rivers to open aquaculture cannot be ignored, and it is recommended that open aquaculture should use these water sources with caution, and that the water quality evaluation of aquaculture water should be increased with monitoring indicators for emerging contaminants such as antibiotics.


Asunto(s)
Antibacterianos , Norfloxacino , Estanques , Ríos , Acuicultura
2.
Materials (Basel) ; 15(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35806642

RESUMEN

The crack and carbonation of concrete pose a great challenge to its durability. Therefore, this paper studies the effect of cracks on the carbonation depth of cement paste under different factors. The relationship between carbonation and cracks was determined, and the carbonation mechanism of cement paste with cracks was clarified. The results show that a small water-binder ratio can effectively inhibit the carbonation process. The bidirectional carbonation enlarged the carbonation area around the crack. Within 21 days of the carbonation, the carbonation depth increased with carbonation time, and the Ca(OH)2 on the surface of the specimen was sufficient, allowing for a convenient chemical reaction with CO2. The influence of crack width on the carbonation process at the crack was greater than the influence of the crack depth. Carbonation influenced the hydration of cement-based materials, altering the types and quantities of hydration products. In conclusion, accurately predicting the regularity of carbonation in cracked structures is critical for improving the durability of concrete.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA