Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2405561, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033541

RESUMEN

Achieving superconductivity at room temperature (RT) is a holy grail in physics. Recent discoveries on high-Tc superconductivity in binary hydrides H3S and LaH10 at high pressure have directed the search for RT superconductors to compress hydrides with conventional electron-phonon mechanisms. Here, an exceptional family of superhydrides is predicated under high pressures, MH12 (M = Mg, Sc, Zr, Hf, Lu), all exhibiting RT superconductivity with calculated Tcs ranging from 313 to 398 K. In contrast to H3S and LaH10, the hydrogen sublattice in MH12 is arranged as quasi-atomic H2 units. This unique configuration is closely associated with high Tc, attributed to the high electronic density of states derived from H2 antibonding states at the Fermi level and the strong electron-phonon coupling related to the bending vibration of H2 and H-M-H. Notably, MgH12 and ScH12 remain dynamically stable even at pressure below 100 GPa. The findings offer crucial insights into achieving RT superconductivity and pave the way for innovative directions in experimental research.

2.
Fundam Res ; 4(3): 550-556, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933186

RESUMEN

The discovery of covalent H3S and clathrate structure LaH10 with excellent superconducting critical temperatures at high pressures has facilitated a multitude of research on compressed hydrides. However, their superconducting pressures are too high (generally above 150 GPa), thereby hindering their application. In addition, making room-temperature superconductivity close to ambient pressure in hydrogen-based superconductors is challenging. In this work, we calculated the chemically "pre-compressed" Be-H by heavy metals Th and Ce to stabilize the superconducting phase near ambient pressure. An unprecedented ThBeH8 (CeBeH8) with a "fluorite-type" structure was predicted to be thermodynamically stable above 69 GPa (76 GPa), yielding a T c of 113 K (28 K) decompressed to 7 GPa (13 GPa) by solving the anisotropic Migdal-Eliashberg equations. Be-H vibrations play a vital role in electron-phonon coupling and structural stability of these ternary hydrides. Our results will guide further experiments toward synthesizing ternary hydride superconductors at mild pressures.

3.
J Chem Phys ; 160(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38445840

RESUMEN

The theory-led prediction of LaBeH8, which has a high superconducting critical temperature (Tc) above liquid nitrogen under a pressure level below 1 Mbar, has been experimentally confirmed. YBeH8, which has a structural configuration similar to that of LaBeH8, has also been predicted to be a high-temperature superconductor at high pressure. In this study, we focus on the structural phase transition and superconductivity of YBeH8 under pressure by using first-principles calculations. Except for the known face-centered cubic phase of Fm3̄m, we found a monoclinic phase with P1̄ symmetry. Moreover, the P1̄ phase transforms to the Fm3̄m phase at ∼200 GPa with zero-point energy corrections. Interestingly, the P1̄ phase undergoes a complex electronic phase transition from semiconductor to metal and then to superconducting states with a low Tc of 40 K at 200 GPa. The Fm3̄m phase exhibits a high Tc of 201 K at 200 GPa, and its Tc does not change significantly with pressure. When we combine the method using two coupling constants, λopt and λac, with first-principles calculations, λopt is mainly supplied by the Be-H alloy backbone, which accounts for about 85% of total λ and makes the greatest contribution to the high Tc. These insights not only contribute to a deeper understanding of the superconducting behavior of this ternary hydride but may also guide the experimental synthesis of hydrogen-rich compounds.

4.
Histol Histopathol ; 38(12): 1453-1464, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36912070

RESUMEN

Lung cancer, one of the most frequently diagnosed cancers, causes a huge number of mortalities globally. Among lung cancers, non-small cell lung cancer (NSCLC) is the most recorded. Despite accumulating research, the molecular basis of NSCLC progression remains poorly known. Therefore, we aim to assess the function of NCK1-AS1 in NSCLC and elucidate the molecular mechanism. Firstly, we quantified the NCK1-AS1 level in tumors and adjacent healthy tissues. NCK1-AS1 was significantly upregulated in NSCLC tumors, which was associated with poor prognosis in patients. Silencing NCK1-AS1 significantly inhibited the proliferation, migration, and invasion, as well as the EMT of NSCLC cell lines. Starbase bioinformatic prediction revealed that NCK1-AS1 targets miR-361-5p which acts to regulate ADAM10 gene expression. Our result showed that NCK1-AS1 upregulation markedly reduced miR-361-5p mRNA expression, while increasing ADAM10 expression. For the first time, we demonstrated that NCK1-AS1 regulates the miR-361-5p/ADAM10 axis, thereby promoting NSCLC progression. NCK1-AS1 might be developed as a therapeutic target for treating NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , ARN Largo no Codificante/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo
5.
Angew Chem Int Ed Engl ; 62(14): e202301573, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36738102

RESUMEN

Pressure-induced emission (PIE) associated with self-trapping excitons (STEs) in low-dimensional halide perovskites has attracted great attention for better materials-by-design. Here, using 2D layered double perovskite (C6 H5 CH2 CH2 NH3 + )4 AgBiBr8 as a model system, we advance a fundamental physicochemical mechanism of the PIE from the perspective of carrier dynamics and excited-state behaviors of local lattice distortion. We observed a pressure-driven STE transformation from dark to bright states, corresponding a strong broadband Stokes-shifted emission. Further theoretical analysis demonstrated that the suppressed lattice distortion and enhanced electronic dimensionality in the excited-state play an important role in the formation of stabilized bright STEs, which could manipulate the self-trapping energy and lattice deformation energy to form an energy barrier between the potential energy curves of ground- and excited-state, and enhance the electron-hole orbital overlap, respectively.

6.
Phys Chem Chem Phys ; 25(6): 5237-5243, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36723263

RESUMEN

Compressed hydrogen-rich compounds have received extensive attention as appealing contenders for superconductors. Here, we found several stable hydrides YZrH6, YZrH8, YZr3H16 and YZrH18, and a series of metastable clathrate hexahydrides in the systematic investigation of Y-Zr-H ternary hydrides under pressure. Electron-phonon coupling calculations indicate that they all exhibit high temperature superconductivity and perform better than the binary Zr-H system. YZrH6 can maintain dynamic stability down to ambient pressure and keep a critical temperature (Tc) of 16 K. The stable YZrH18 and metastable Y3ZrH24 with high hydrogen content exhibit high Tc of 156 K and 185 K at 200 GPa, respectively. Further analysis shows that the phonon modes associated with H atoms contribute significantly to the electron-phonon coupling. The hydrogen content and the stoichiometric ratio of Y and Zr closely affect the density of states at the Fermi level, thereby affecting the superconductivity. Our work presents an important step toward understanding the superconductivity and stability of transition metal ternary hydrides.

7.
Inorg Chem ; 61(45): 18112-18118, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36315842

RESUMEN

Hydrogen-rich compounds have long been considered as one of the hotspot materials for achieving room-temperature superconductivity. We systematically investigate the high-pressure phase diagram of the K-H system and identified two unreported clathrate extreme superhydrides KH20 and KH30, hosting high superconducting transition temperatures (Tc) of 283 and 243 K at 500 GPa, respectively. The extremely high hydrogen content significantly increases H-derived electronic density of states at the Fermi level, constituting the main contributor to participate in electron-phonon coupling thus producing high-Tc. The large electron localizations in the interstitial region of the metal lattice under high pressure effectively assist the dissociation of hydrogen molecular units, forming unique H36 cages. These results offer key insights into the stability and potential high-Tc superconductivity of compressed extreme superhydrides and will further stimulate related research.

8.
J Colloid Interface Sci ; 624: 555-563, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35688095

RESUMEN

Silicon (Si) anode is the most promising alternative for next generation lithium-ion batteries (LIBs) owing to large theoretical capacity, low working voltage and abundant natural resources. However, tremendous volume change of Si during the (de)lithiation processes causes repetitive formation of solid electrolyte interphase (SEI) layers, loss of electrical contact and electrodes pulverization, limiting its commercial application. Herein, we fabricate an interconnected hollow Si-C nanospheres/graphite composite via a facile and scalable approach. Notably, hollow Si-C nanospheres and graphite are homogeneously combined by using the surfactants as surface modifiers of graphite and introducing carbon dioxide (CO2) into magnesiothermic reduction reaction, resulting in the enhanced compatibility between hollow Si-C nanospheres and graphite, and the well-established electrical conductive network. The resultant Si-C nanospheres/graphite composite anode with carbon content of 59 wt% delivers a large reversible specific capacity of 662 mAh g-1 and a high capacity retention of 65.7% at 0.5 A g-1 after 200 cycles. Such excellent rate performance and superior cycling performance are attributed to high electrical conductivity and buffering effect of graphite, superior compatibility between hollow Si-C spheres and graphite, uniform distribution of both Si-C nanospheres with a unique hollow architecture and graphite flakes inside the composites and well-established interconnected electrical conductive carbon networks, which can effectively alleviate Si volume expansion and maintain good electrical contact during cycling. This strategy provides insights into designing Si-based anodes for practical LIBs.

9.
J Phys Condens Matter ; 34(20)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35172288

RESUMEN

Lanthanum (La), the first member of the lanthanide elements, recently aroused interests due to the discovery of high-Tcsuperconductor LaH10under high pressures and its unique superconducting properties. Here, we study the phase transitions, superconductivity and mechanical properties of metallic La under high pressures by first-principle calculations. The known face-centered cubic (fcc) phase with space groupFm3¯mstill exists above 100 GPa. And it transforms into an unprecedented body-centered tetragonal (bct) phase with space groupI4/mmmabove 180 GPa, which expands the high pressure phase transition sequence. Further calculations show that the superconducting transition temperatureTcof fcc phase decreases with increasing pressure with the rate of -0.13 K GPa-1, in good agreement with the experimental results. For the bct phase, the estimated superconducting transition temperature is very low withTcof 0.7 K at 200 GPa. The calculations of mechanical properties show that both of fcc and bct phases are compressible and brittle.

10.
Environ Technol ; : 1-14, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34048324

RESUMEN

The photocatalytic reduction of methylene blue was recognized as an economical and effective way for dye removal. To enhance photocatalytic activity under visible-light condition, fluorine and graphene synergistically modified TiO2 (F-TiO2/rGO) nanocomposites were successfully prepared by sol-gel method. Characterization results showed F ions played an essential role in the formation of TiO2 nanoparticles. Between the fluorine sources selected, NH4F was more optimal than NaF doping on the grounds that the existence of Na+ ion was an inevitable factor for the production of brookite. F-TiO2/rGO nanocomposite obtained by adding 5%at NH4F significantly narrowed the bandgap energy from approximately 3.17 to 2.41 eV. Box-Behnken design was adopted to optimize the MB photo-degradation process by F(5%NH4F)-TiO2/rGO nanocomposites under different reaction conditions. Moreover, the antibacterial behaviour of this novel material was also investigated by Escherichia coli (E. coli) bacteria under visible light. The morphology changes of E. coli cells were directly observed by field emission scanning electron microscope and further confirmed that the excellent sterilization of F-TiO2/rGO nanocomposites resulted from the active species. The outstanding photocatalytic performance and antibacterial behaviour of F-TiO2/rGO nanocomposite was attributed to the synergistic effect of photocatalytic redox reaction and adsorption. These results indicated F(5%NH4F)-TiO2/rGO nanocomposite was a promising antibacterial photo-adsorbent for wastewater treatment improvement.

11.
Front Public Health ; 9: 763829, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155338

RESUMEN

OBJECTIVE: To provide references for effective implementing cost management for public hospitals through establishing time-driven activity-based management (TDABM) system. The TDABM system was established from hospital cost accounting, budget, control, and performance. RESULTS: The established TDABM system could improve the precision of hospital cost accounting, improve medical staff's working efficiency, realize the whole process of cost management, and enhance the competitiveness of the hospital. CONCLUSION: The activity of implementing TDABM in public hospitals had practical significance.


Asunto(s)
Contabilidad , Costos de Hospital , Hospitales Públicos , Humanos
12.
Int J Biol Macromol ; 149: 1318-1322, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061703

RESUMEN

China, a big paper-making country, produced hundreds of millions of tons of waste paper which contain a lot of fiber every year. Cellulose nanocrystals were extracted from recycled waste paper which can be a high value utilization of secondary fiber. In this paper, cellulose nanocrystals were successfully extracted from waste paper fibers via two different systems, sulfuric acid hydrolysis (SCNCs) and one-step ammonium persulfate (APS) oxidation (OCNCs). This not only broadened the methods of extracting CNCs from waste paper, but also improved the dispersion and reactivity of CNCs. The CNCs products were investigated by FT-IR spectroscopy for functional group structure, X-ray diffraction for crystal structure, TG-DTG for thermal stability and scanning electron microscope, transmission electron microscope for morphology. The results showed that both OCNCs and SCNCs were a rod-like structure. The crystallinity of OCNCs and SCNCs increased to 72.45 and 77.56, but with a low yield of 22.42% and 41.22%, respectively. The result also suggested H2O2 formed by decomposition of APS, selectively oxidized the hydroxyl on the C6 in cellulose to carboxyl, introduced 0.57 mmol/g carboxyl. Successful preparation of CNCs extracted from waste paper can effectively utilize the fiber resources in waste paper, thus transforming into higher economic benefits.


Asunto(s)
Celulosa/síntesis química , Nanopartículas/química , Papel , Residuos/análisis , Sulfato de Amonio/química , Celulosa/química , Nanopartículas/ultraestructura , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos Sulfúricos/química , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA