Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(31): 21245-21249, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39074299

RESUMEN

Achieving therapeutic efficacy in protein replacement therapies requires sustaining pharmacokinetic (PK) profiles, while maintaining the bioactivity of circulating proteins. This is often achieved via PEGylation in protein-based therapies, but it remains challenging for proteins produced in vivo in mRNA-based therapies due to the lack of a suitable post-translational modification method. To address this issue, we integrated a genetically encoded zwitterionic polypeptide, EKP, into mRNA constructs to enhance the PK properties of product proteins. Composed of alternating glutamic acid (E), lysine (K), and proline (P), EKP exhibits unique superhydrophilic properties and low immunogenicity. Our results demonstrate that EKP fusion significantly extends the circulation half-life of proteins expressed from mRNA while preserving their bioactivity using human interferon alpha and Neoleukin-2/15 as examples. This EKP fusion technology offers a new approach to overcoming the current limitations in mRNA therapeutics and has the potential to significantly advance the development of mRNA-based protein replacement therapy.


Asunto(s)
Péptidos , ARN Mensajero , Humanos , ARN Mensajero/genética , ARN Mensajero/química , Péptidos/química , Péptidos/farmacocinética , Animales , Interferón-alfa/farmacocinética , Interferón-alfa/química , Interferón-alfa/genética , Ratones
2.
Bioconjug Chem ; 35(5): 575-581, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38456602

RESUMEN

Living microbial therapies have been proposed as a course of action for a variety of diseases. However, problematic interactions between the host immune system and the microbial organism present significant clinical concerns. Previously, we developed a genetically encoded superhydrophilic zwitterionic peptide, termed EKP, to mimic low-immunogenic zwitterionic materials, which have been used for the chemical modification of biologics such as protein and nucleic acid drugs to increase their in vivo circulation time and reduce their immunogenicity. Herein, we demonstrate the protective effects of the EKP polypeptide genetically cloaking the surface of Saccharomyces cerevisiae as a model microbe in both in vitro and in vivo systems. First, we show that EKP peptide cloaking suppresses the interactions between yeast cells and their specific antibodies, thereby illustrating its cloaking behavior. Then, we examine the in vitro interactions between EKP peptide surface cloaked yeast cells and murine macrophage cells, which exhibit phagocytotic behavior in the presence of foreign microbes. Our results indicate that EKP cloaking suppresses macrophage interactions and thus reduces phagocytosis. Furthermore, EKP cloaked yeast cells demonstrate a prolonged circulation time in mice in vivo.


Asunto(s)
Péptidos , Saccharomyces cerevisiae , Animales , Ratones , Péptidos/química , Péptidos/farmacología , Fagocitosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología
3.
Nat Biomed Eng ; 8(4): 415-426, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38374224

RESUMEN

The blood-brain barrier (BBB) restricts the systemic delivery of messenger RNAs (mRNAs) into diseased neurons. Although leucocyte-derived extracellular vesicles (EVs) can cross the BBB at inflammatory sites, it is difficult to efficiently load long mRNAs into the EVs and to enhance their neuronal uptake. Here we show that the packaging of mRNA into leucocyte-derived EVs and the endocytosis of the EVs by neurons can be enhanced by engineering leucocytes to produce EVs that incorporate retrovirus-like mRNA-packaging capsids. We transfected immortalized and primary bone-marrow-derived leucocytes with DNA or RNA encoding the capsid-forming activity-regulated cytoskeleton-associated (Arc) protein as well as capsid-stabilizing Arc 5'-untranslated-region RNA elements. These engineered EVs inherit endothelial adhesion molecules from donor leukocytes, recruit endogenous enveloping proteins to their surface, cross the BBB, and enter the neurons in neuro-inflammatory sites. Produced from self-derived donor leukocytes, the EVs are immunologically inert, and enhanced the neuronal uptake of the packaged mRNA in a mouse model of low-grade chronic neuro-inflammation.


Asunto(s)
Barrera Hematoencefálica , Vesículas Extracelulares , Neuronas , ARN Mensajero , Animales , Neuronas/metabolismo , Vesículas Extracelulares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratones , Barrera Hematoencefálica/metabolismo , Retroviridae/genética , Cápside/metabolismo , Leucocitos/metabolismo , Humanos , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA