Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5870, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735451

RESUMEN

Crystal-field perturbation is theoretically the most direct and effective method of achieving highly efficient photoluminescence from trivalent lanthanide (Ln3+) ions through breaking the parity-forbidden nature of their 4f-transitions. However, exerting such crystal-field perturbation remains an arduous task even in well-developed Ln3+-doped luminescent nanocrystals (NCs). Herein, we report crystal-field perturbation through interstitial H+-doping in orthorhombic-phase NaMgF3:Ln3+ NCs and achieve a three-orders-of-magnitude emission amplification without a distinct lattice distortion. Mechanistic studies reveal that the interstitial H+ ions perturb the local charge density distribution, leading to anisotropic polarization of the F- ligand, which affects the highly symmetric Ln3+-substituted [MgF6]4- octahedral clusters. This effectively alleviates the parity-forbidden selective rule to enhance the 4f-4 f radiative transition rate of the Ln3+ emitter and is directly corroborated by the apparent shortening of the radiative recombination lifetime. The interstitially H+-doped NaMgF3:Yb/Er NCs are successfully used as bioimaging agents for real-time vascular imaging. These findings provide concrete evidence for crystal-field perturbation effects and promote the design of Ln3+-doped luminescent NCs with high brightness.

2.
Regen Biomater ; 9: rbac039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936553

RESUMEN

Amelogenin can induce odontogenic differentiation of human dental pulp cells (HDPCs), which has great potential and advantages in dentine-pulp complex regeneration. However, the unstability of amelogenin limits its further application. This study constructed amelogenin self-assembling peptide hydrogels (L-gel or D-gel) by heating-cooling technique, investigated the effects of these hydrogels on the odontogenic differentiation of HDPCs and explored the underneath mechanism. The critical aggregation concentration, conformation, morphology, mechanical property and biological stability of the hydrogels were characterized, respectively. The effects of the hydrogels on the odontogenic differentiation of HDPCs were evaluated via alkaline phosphatase activity measurement, quantitative reverse transcription polymerase chain reaction, western blot, Alizarin red staining and scanning electron microscope. The mechanism was explored via signaling pathway experiments. Results showed that both the L-gel and D-gel stimulated the odontogenic differentiation of HDPCs on both Day 7 and Day 14, while the D-gel showed the highest enhancement effects. Meanwhile, the D-gel promoted calcium accumulation and mineralized matrix deposition on Day 21. The D-gel activated MAPK-ERK1/2 pathways in HDPCs and induced the odontogenic differentiation via ERK1/2 and transforming growth factor/smad pathways. Overall, our study demonstrated that the amelogenin peptide hydrogel stimulated the odontogenic differentiation and enhanced mineralization, which held big potential in the dentine-pulp complex regeneration.

3.
Regen Biomater ; 8(4): rbab028, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34188954

RESUMEN

This study aimed at evaluate the effects of different aperture-sized type I collagen/silk fibroin (CSF) scaffolds on the proliferation and differentiation of human dental pulp cells (HDPCs). The CSF scaffolds were designed with 3D mapping software Solidworks. Three different aperture-sized scaffolds (CSF1-CSF3) were prepared by low-temperature deposition 3D printing technology. The morphology was observed by scanning electron microscope (SEM) and optical coherence tomography. The porosity, hydrophilicity and mechanical capacity of the scaffold were detected, respectively. HDPCs (third passage, 1 × 105 cells) were seeded into each scaffold and investigated by SEM, CCK-8, alkaline phosphatase (ALP) activity and HE staining. The CSF scaffolds had porous structures with macropores and micropores. The macropore size of CSF1 to CSF3 was 421 ± 27 µm, 579 ± 36 µm and 707 ± 43 µm, respectively. The porosity was 69.8 ± 2.2%, 80.1 ± 2.8% and 86.5 ± 3.3%, respectively. All these scaffolds enhanced the adhesion and proliferation of HDPCs. The ALP activity in the CSF1 group was higher than that in the CSF3 groups (P < 0.01). HE staining showed HDPCs grew in multilayer within the scaffolds. CSF scaffolds significantly improved the adhesion and ALP activity of HDPCs. CSF scaffolds were promising candidates in dentine-pulp complex regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...