Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Environ Health ; 23(1): 36, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609898

RESUMEN

BACKGROUND: Multifaceted SARS-CoV-2 interventions have modified exposure to air pollution and dynamics of respiratory diseases. Identifying the most vulnerable individuals requires effort to build a complete picture of the dynamic health effects of air pollution exposure, accounting for disparities across population subgroups. METHODS: We use generalized additive model to assess the likely changes in the hospitalisation and mortality rate as a result of exposure to PM2.5 and O3 over the course of COVID-19 pandemic. We further disaggregate the population into detailed age categories and illustrate a shifting age profile of high-risk population groups. Additionally, we apply multivariable logistic regression to integrate demographic, socioeconomic and climatic characteristics with the pollution-related excess risk. RESULTS: Overall, a total of 1,051,893 hospital admissions and 34,954 mortality for respiratory disease are recorded. The findings demonstrate a transition in the association between air pollutants and hospitalisation rates over time. For every 10 µg/m3 increase of PM2.5, the rate of hospital admission increased by 0.2% (95% CI: 0.1-0.7%) and 1.4% (1.0-1.7%) in the pre-pandemic and dynamic zero-COVID stage, respectively. Conversely, O3-related hospitalization rate would be increased by 0.7% (0.5-0.9%) in the pre-pandemic stage but lowered to 1.7% (1.5-1.9%) in the dynamic zero-COVID stage. Further assessment indicates a shift of high-risk people from children and young adolescents to the old, primarily the elevated hospitalization rates among the old people in Lianyungang (RR: 1.53, 95%CI: 1.46, 1.60) and Nantong (RR: 1.65, 95%CI: 1.57, 1.72) relative to those for children and young adolescents. Over the course of our study period, people with underlying diseases would have 26.5% (22.8-30.3%) and 12.7% (10.8-14.6%) higher odds of having longer hospitalisation and over 6 times higher odds of deaths after hospitalisation. CONCLUSIONS: Our estimates provide the first comprehensive evidence on the dynamic pollution-health associations throughout the pandemic. The results suggest that age and underlying diseases collectively determines the disparities of pollution-related health effect across population subgroups, underscoring the urgency to identifying the most vulnerable individuals to air pollution.


Asunto(s)
Contaminación del Aire , Trastornos Respiratorios , Enfermedades Respiratorias , Adolescente , Niño , Humanos , Pandemias , Enfermedades Respiratorias/epidemiología , Contaminación del Aire/efectos adversos , Material Particulado/efectos adversos
2.
Mol Carcinog ; 63(4): 757-771, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38289172

RESUMEN

Long noncoding RNAs (LncRNAs) have been gaining attention as potential therapeutic targets for lung cancer. In this study, we investigated the expression and biological behavior of lncRNA DARS-AS1, its predicted interacting partner miR-302a-3p, and ACAT1 in nonsmall cell lung cancer (NSCLC). The transcript level of DARS-AS1, miR-302a-3p, and ACAT1 was analyzed using qRT-PCR. Endogenous expression of ACAT1 and the expression of-and changes in-AKT/ERK pathway-related proteins were determined using western blotting. MTS, Transwell, and apoptosis experiments were used to investigate the behavior of cells. The subcellular localization of DARS-AS1 was verified using FISH, and its binding site was verified using dual-luciferase reporter experiments. The binding of DARS-AS1 to miR-302a-3p was verified using RNA co-immunoprecipitation. In vivo experiments were performed using a xenograft model to determine the effect of DARS-AS1 knockout on ACAT1 and NSCLC. lncRNA DARS-AS1 was upregulated in NSCLC cell lines and tissues and the expression of lncRNA DARS-AS1 was negatively correlated with survival of patients with NSCLC. Knockdown of DARS-AS1 inhibited the malignant behaviors of NSCLC via upregulating miR-302a-3p. miR-302a-3p induced suppression of malignancy through regulating oncogene ACAT1. This study demonstrates that the DARS-AS1-miR-302a-3p-ACAT1 pathway plays a key role in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo
3.
Phys Chem Chem Phys ; 26(6): 4794-4811, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38259226

RESUMEN

In recent years, remarkable advancements have been achieved in the field of halide perovskite solar cells (PSCs). However, the commercialization of PSCs has been impeded by challenges such as Pb leakage and the instability of hybrid organic-inorganic perovskites (HOIPs). Hence, the future lies in the development of environmentally friendly inorganic lead-free halide perovskites (LFHPs) based on elements like Sn, Ge, Bi, Sb, and Cu, which show great promise for photovoltaic applications. However, LFHP photovoltaic cells still face challenges such as low efficiency, poor film quality, and stability in comparison to HOIPs. These limitations significantly hinder their further development. To address these issues, element doping strategies, including cationic and anionic doping, as well as the use of additives, are frequently employed. These strategies aim to improve film quality, passivate defects, reduce the band gap, and enhance device performance and stability. In this paper, we aim to provide a comprehensive review of the recent research progress in doping strategies for LFHPs.

4.
FASEB J ; 37(11): e23195, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37801076

RESUMEN

RUNX1, a member of the RUNX family of metazoan transcription factors, participates in the regulation of differentiation, proliferation, and other processes involved in growth and development. It also functions in the occurrence and development of tumors. However, the role and mechanism of action of RUNX1 in non-small cell lung cancer (NSCLC) are not yet clear. We used a bioinformatics approach as well as in vitro and in vivo assays to evaluate the role of RUNX1 in NSCLC as the molecular mechanisms underlying its effects. Using the TCGA, GEO, GEPIA (Gene Expression Profiling Interactive Analysis), and Kaplan-Meier databases, we screened the differentially expressed genes (DEGs) and found that RUNX1 was highly expressed in lung cancer and was associated with a poor prognosis. Immunohistochemical staining based on tissue chips from 110 samples showed that the expression of RUNX1 in lung cancer tissues was higher than that in adjacent normal tissues and was positively correlated with lymph node metastasis and TNM staging. In vitro experiments, we found that RUNX1 overexpression promoted cell proliferation and migration functions and affected downstream functional proteins by regulating the activity of the mTOR pathway, as confirmed by an analysis using the mTOR pathway inhibitor rapamycin. In addition, RUNX1 affected PD-L1 expression via the mTOR pathway. These results indicate that RUNX1 is a potential therapeutic target for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
5.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1932-1940, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37694477

RESUMEN

The aim of this study was to investigate the relationship between green biomass composition and thermal environment, as well as their optimal composition pattern. We decomposed total green biomass in a certain spatial range into two categories: trees and shrubs-grasses, with urban residential areas as sampling sites and based on aerial photography and field research data of green biomass and optimized green biomass measurement method. We analyzed the correlation between the green biomass composition indicators (shrub and grass biomass, tree canopy biomass, green biomass, mean tree canopy biomass, number of trees) and ambient temperature and humidity in different spatial ranges. The results showed that the most significant cooling and humidifying effect of different green biomass composition indicators was at 50 m below the building scale. The mean tree canopy biomass and tree canopy biomass were the key factors affecting ambient temperature and humidity, respectively, in different time periods during the day. With an average canopy biomass of about 211 m3 and 62 trees in a 50 m space, the regulation effects of trees on ambient temperature and humidity were closer to the thermal comfort requirements of human body.


Asunto(s)
Frío , Fotograbar , Humanos , Biomasa , Estaciones del Año , Humedad , Poaceae , Árboles
6.
Cell Death Dis ; 14(8): 558, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626047

RESUMEN

At present, non-small cell lung cancer (NSCLC) is still one of the leading causes of cancer-related deaths. Chemotherapy remains the standard treatment for NSCLC. However, the emergence of chemoresistance is one of the major obstacles to lung cancer treatment. Plant homologous structural domain finger protein 23 (PHF23) plays crucial roles in multiple cell fates. However, the clinical significance and biological role of PHF23 in NSCLC remain elusive. The Cancer Genome Atlas data mining, NCBI/GEO data mining, and western blotting analysis were employed to characterize the expression of PHF23 in NSCLC cell lines and tissues. Statistical analysis of immunohistochemistry and the Kaplan-Meier Plotter database were used to investigate the clinical significance of PHF23. A series of in vivo and in vitro assays, including assays for colony formation, cell viability, 5-ethynyl-2'-deoxyuridine (EDU incorporation) and Transwell migration, flow cytometry, RT-PCR, gene set enrichment analysis, co-immunoprecipitation analysis, and a xenograft tumor model, were performed to demonstrate the effects of PHF23 on the chemosensitivity of NSCLC cells and to clarify the underlying molecular mechanisms. PHF23 is overexpressed in NSCLC cell lines and tissues. High PHF23 levels correlate with short survival times and a poor response to chemotherapy in NSCLC patients. PHF23 overexpression facilitates cell proliferation, migration and sensitizes NSCLC cells to Cisplatin and Docetaxel by promoting DNA damage repair. Alpha-actinin-4 (ACTN4), as a downstream regulator, interacts with PHD domain of PHF23. Moreover, PHF23 is involved in ACTN4 stabilization by inhibiting its ubiquitination level. These results show that PHF23 plays an important role in the development and progression of NSCLC and suggest that PHF23 may serve as a therapeutic target in NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Sistema de Señalización de MAP Quinasas , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Factores de Transcripción , Proliferación Celular , Actinina/genética , Proteínas de Homeodominio
7.
Anal Chem ; 95(34): 12948-12955, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37589130

RESUMEN

With the widespread use of drugs, drug-induced acute kidney injury (AKI) has become an increasingly serious health concern worldwide. Currently, early diagnosis of drug-induced AKI remains challenging because of the lack of effective biomarkers and noninvasive imaging tools. SO2 plays important physiological roles in living systems and is an important antioxidant for maintaining redox homeostasis. However, the relationship between SO2 (in water as SO32-/HSO3-) and drug-induced AKI remains largely unknown. Herein, we report the highly sensitive near-infrared fluorescence probe DSMN, which for the first time reveals the relationship between SO2 and drug-induced AKI. The probe responds to SO32-/HSO3- selectively and rapidly (within seconds) and shows a significant turn-on fluorescence at 710 nm with a large Stokes shift (125 nm). With these properties, the probe was successfully applied to detect SO2 in living cells and mice. Importantly, the probe can selectively target the kidneys, allowing for the detection of changes in the SO2 concentration in the kidneys. Based on this, DSMN was successfully used to detect cisplatin-induced AKI and revealed an increase in the SO2 levels. The results indicate that SO2 is a new biomarker for AKI and that DSMN is a powerful tool for studying and diagnosing drug-induced AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Ratones , Fluorescencia , Riñón/diagnóstico por imagen , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico por imagen , Biomarcadores
8.
Neural Netw ; 164: 323-334, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37163848

RESUMEN

Few-shot Knowledge Graph Completion (FKGC) has recently attracted significant research interest due to its ability to expand few-shot relation coverage in Knowledge Graphs. Prevailing FKGC approaches focus on exploiting the one-hop neighbor information of entities to enhance few-shot relation embedding. However, these methods select one-hop neighbors randomly and neglect the rich multi-aspect information of entities. Although some methods have attempted to leverage Long Short-Term Memory (LSTM) to learn few-shot relation embedding, they are sensitive to the input order. To address these limitations, we propose the Capsule Neural Tensor Networks with Multi-Aspect Information approach (short for InforMix-FKGC). InforMix-FKGC employs a one-hop neighbor selection strategy based on how valuable they are and encodes multi-aspect information of entities, including one-hop neighbors, attributes and literal description. Then, a capsule network is responsible for integrating the support set and deriving few-shot relation embedding. Moreover, a neural tensor network is used to match the query set with the support set. In this way, InforMix-FKGC can learn few-shot relation embedding more precisely so as to enhance the accuracy of FKGC. Extensive experiments on the NELL-One and Wiki-One datasets demonstrate that InforMix-FKGC significantly outperforms ten state-of-the-art methods in terms of Mean Reciprocal Rank and Hits@K.


Asunto(s)
Conocimiento , Reconocimiento de Normas Patrones Automatizadas , Aprendizaje , Memoria a Largo Plazo , Redes Neurales de la Computación
9.
Anal Chem ; 95(18): 7254-7261, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37125920

RESUMEN

Cancer is a worldwide health problem. Revealing the changes in the microenvironment after cell carcinogenesis is helpful to understand cancer and develop sensitive methods for cancer diagnosis. We developed herein a viscosity-responsive plasma membrane probe (TPA-S) that was successfully used to probe the viscosity difference between normal and tumor cell plasma membranes for the first time. The probe shows AIE properties with good water solubility, significant near-infrared (NIR) fluorescence responses to viscosity with high sensitivity, and excellent cell membrane location performance. With these features, our experiments showed that TPA-S could selectively visualize cancer cell plasma membranes, revealing that the plasma membrane of tumor cells is more viscous than that of normal cells. In addition, TPA-S was successfully applied to specifically light up tumors. Altogether, this work explored the changes of cell membrane viscosity after canceration, provided a new method for selective visualization of tumor cells, and opened up a new approach for cancer diagnosis.


Asunto(s)
Neoplasias , Humanos , Viscosidad , Membrana Celular/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Fluorescencia , Carcinogénesis , Colorantes Fluorescentes/metabolismo , Células HeLa , Microambiente Tumoral
10.
Artículo en Inglés | MEDLINE | ID: mdl-37204952

RESUMEN

As a complex neural network system, the brain regions and genes collaborate to effectively store and transmit information. We abstract the collaboration correlations as the brain region gene community network (BG-CN) and present a new deep learning approach, such as the community graph convolutional neural network (Com-GCN), for investigating the transmission of information within and between communities. The results can be used for diagnosing and extracting causal factors for Alzheimer's disease (AD). First, an affinity aggregation model for BG-CN is developed to describe intercommunity and intracommunity information transmission. Second, we design the Com-GCN architecture with intercommunity convolution and intracommunity convolution operations based on the affinity aggregation model. Through sufficient experimental validation on the AD neuroimaging initiative (ADNI) dataset, the design of Com-GCN matches the physiological mechanism better and improves the interpretability and classification performance. Furthermore, Com-GCN can identify lesioned brain regions and disease-causing genes, which may assist precision medicine and drug design in AD and serve as a valuable reference for other neurological disorders.

11.
Ecotoxicol Environ Saf ; 259: 115029, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216867

RESUMEN

Nitrogen (N) deposition has increased dramatically in recent decades, which is significantly affecting the invasion and growth of exotic plants. Whether N deposition leads to invasive alien species becoming competitively superior to native species remains to be investigated. In the present study, an invasive species (Oenothera biennis L.) and three co-occurring native species (Artemisia argyi Lévl. et Vant., Inula japonica Thunb., and Chenopodium album L.) were grown in a monoculture (two seedlings of the same species) or mixed culture (one seedling of O. biennis and one seedling of a native species) under three levels of N deposition (0, 6, and 12 g∙m-2∙year-1). Nitrogen deposition had no effect on soil N and P content. Nitrogen deposition enhanced the crown area, total biomass, leaf chlorophyll content, and leaf N to phosphorus ratio in both invasive and native plants. Oenothera biennis dominated competition with C. album and I. japonica due to its high resource acquisition and absorption capacity (greater height, canopy, leaf chlorophyll a to chlorophyll b ratio, leaf chlorophyll content, leaf N content, leaf mass fraction, and lower root-to-shoot ratio). However, the native species A. argyi exhibited competitive ability similar to O. biennis. Thus, invasive species are not always superior competitors of native species; this depends on the identities of the native species. High N deposition enhanced the competitive dominance of O. biennis over I. japonica by 15.45% but did not alter the competitive dominance of O. biennis over C. album. Furthermore, N deposition did not affect the dominance of O. biennis or A. argyi. Therefore, the species composition of the native community must be considered when preparing to resist future biological invasions. Our study contributes to a better understanding of the invasion mechanisms of alien species under N-loading conditions.


Asunto(s)
Nitrógeno , Plantas , Clorofila A , Plantones , Clorofila , Especies Introducidas , Suelo
12.
ACS Omega ; 8(14): 12644-12652, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37065058

RESUMEN

Corn straw/epoxy resin composites (CS/ECs) and maleic anhydride acetylated CS/ECs (MA-CS/ECs) were prepared through dry mixing and high-temperature curing. Corn straw is a kind of abundant, eco-friendly, and low-cost biomass material. Unmodified and modified corn straws were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The interfacial affinity of the composite was testified by the contact angle. The results of XPS and SEM demonstrated that maleic anhydride had been successfully bonded onto the structure of corn straw. Corn straw particle-reinforced epoxy resin composites were prepared using a casting and molding process. Results showed that the MA-CS/EC had better impact and flexural resistance than the unmodified corn straw/epoxy resin composites when the corn straw addition was 15 wt %. The result of the contact angle showed that the interfacial compatibility between composites is also stronger than that of CS/EC.

13.
Front Physiol ; 14: 1136561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057181

RESUMEN

Osteocalcin (Ocn), also known as bone Gla protein, is synthesized by osteoblasts and thought to regulate energy metabolism, testosterone synthesis and brain development. However, its function in bone is not fully understood. Mice have three Ocn genes: Bglap, Bglap2 and Bglap3. Due to the long span of these genes in the mouse genome and the low expression of Bglap3 in bone, researchers commonly use Bglap and Bglap2 knockout mice to investigate the function of Ocn. However, it is unclear whether Bglap3 has any compensatory mechanisms when Bglap and Bglap2 are knocked out. Considering the controversy surrounding the role of Ocn in bone, we constructed an Ocn-deficient mouse model by knocking out all three genes (Ocn-/-) and analyzed bone quality by Raman spectroscopy (RS), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and MicroCT (µCT). The RS test showed that the alignment of hydroxyapatite crystals and collagen fibers was significantly poorer in Ocn-/- mice than in wild-type (WT) mice. Ocn deficiency resulted in a looser surface structure of bone particles and a larger gap area proportion. FTIR analysis showed few differences in bone mineral index between WT and Ocn-/- mice, while µCT analysis showed no significant difference in cortical and trabecular regions. However, under tail-suspension simulating bone loss condition, the disorder of hydroxyapatite and collagen fiber alignment in Ocn-/- mice led to more obvious changes in bone mineral composition. Collectively, our results revealed that Ocn is necessary for regulating the alignment of minerals parallel to collagen fibrils.

14.
Nanomicro Lett ; 15(1): 58, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862313

RESUMEN

Lead-free inorganic copper-silver-bismuth-halide materials have attracted more and more attention due to their environmental friendliness, high element abundance, and low cost. Here, we developed a strategy of one-step gas-solid-phase diffusion-induced reaction to fabricate a series of bandgap-tunable CuaAgm1Bim2In/CuI bilayer films due to the atomic diffusion effect for the first time. By designing and regulating the sputtered Cu/Ag/Bi metal film thickness, the bandgap of CuaAgm1Bim2In could be reduced from 2.06 to 1.78 eV. Solar cells with the structure of FTO/TiO2/CuaAgm1Bim2In/CuI/carbon were constructed, yielding a champion power conversion efficiency of 2.76%, which is the highest reported for this class of materials owing to the bandgap reduction and the peculiar bilayer structure. The current work provides a practical path for developing the next generation of efficient, stable, and environmentally friendly photovoltaic materials.

15.
Thromb Haemost ; 123(7): 714-722, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36913976

RESUMEN

BACKGROUND: The aim of this study was to identify the role of factor VIII (FVIII) in portal vein thrombosis (PVT) occurrence in cirrhotic patients with gastroesophageal variceal bleeding. METHODS: A total of 453 cirrhotic patients with gastroesophageal varices were enrolled. Computed tomography was performed at baseline and patients were divided into PVT and non-PVT groups (n = 131 vs. 322). Individuals without PVT at baseline were followed up for the development of PVT. Time-dependent receiver operating characteristic analysis of FVIII for PVT development was performed. The Kaplan-Meier methodology was used to analyze the predictive ability of FVIII for PVT incidence at 1 year. RESULTS: FVIII activity (177.00 vs. 153.70, p = 0.001) was significantly increased in the PVT group compared with the non-PVT group in cirrhotic patients with gastroesophageal varices. FVIII activity was positively correlated with the severity of PVT (161.50 vs. 171.07 vs. 187.05%, p = 0.001). Furthermore, FVIII activity (hazard ratio [HR]: 3.48, 95% confidence interval [CI]: 1.14-10.68, p = 0.029 in model 1; HR: 3.29, 95% CI: 1.03-10.51, p = 0.045 in model 2) was an independent risk factor of 1-year PVT development in patients without PVT at baseline, which was confirmed by two separate Cox regression analysis and competing risk models. Patients with elevated FVIII activity exhibit a higher incidence of PVT in the non-PVT group at 1 year (15.17 vs. 3.16%, p < 0.001). The predictive value of FVIII remains significant in individuals who have never received splenectomy (14.76 vs. 3.04%, p = 0.002). CONCLUSION: Elevated FVIII activity was potentially associated with the occurrence and the severity of PVT. It might be helpful to identify cirrhotic patients at risk of PVT.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Várices Esofágicas y Gástricas , Várices , Trombosis de la Vena , Humanos , Vena Porta/diagnóstico por imagen , Vena Porta/patología , Várices Esofágicas y Gástricas/epidemiología , Várices Esofágicas y Gástricas/etiología , Factor VIII , Hemorragia Gastrointestinal/epidemiología , Hemorragia Gastrointestinal/etiología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Factores de Riesgo , Várices/complicaciones , Trombosis de la Vena/complicaciones , Trastornos de la Coagulación Sanguínea/complicaciones
16.
Macromol Biosci ; 23(3): e2200472, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598869

RESUMEN

Cell sheet harvesting offers a great potential for the development of new therapies for regenerative medicine. For cells to adhere onto surfaces, proliferate, and to be released on demand, thermoresponsive polymeric coatings are generally considered to be required. Herein, an alternative approach for the cell sheet harvesting and rapid release on demand is reported, circumventing the use of thermoresponsive materials. This approach is based on the end-group biofunctionalization of non-thermoresponsive and antifouling poly(2-hydroxyethyl methacrylate) (p(HEMA)) brushes with cell-adhesive peptide motifs. While the nonfunctionalized p(HEMA) surfaces are cell-repellant, ligation of cell-signaling ligand enables extensive attachment and proliferation of NIH 3T3 fibroblasts until the formation of a confluent cell layer. Remarkably, the formed cell sheets can be released from the surfaces by gentle rinsing with cell-culture medium. The release of the cells is found to be facilitated by low surface density of cell-adhesive peptides, as confirmed by X-ray photoelectron spectroscopy. Additionally, the developed system affords possibility for repeated cell seeding, proliferation, and release on previously used substrates without any additional pretreatment steps. This new approach represents an alternative to thermally triggered cell-sheet harvesting platforms, offering possibility of capture and proliferation of various rare cell lines via appropriate selection of the cell-adhesive ligand.


Asunto(s)
Péptidos , Polímeros , Polímeros/química , Ligandos , Adhesión Celular , Propiedades de Superficie
17.
Cereb Cortex ; 33(9): 5289-5296, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36300622

RESUMEN

Fractal dimension (FD) is used to quantify brain structural complexity and is more sensitive to morphological variability than other cortical measures. However, the effects of normal aging and sex on FD are not fully understood. In this study, age- and sex-related differences in FD were investigated in a sample of 448 adults age of 19-80 years from a Chinese dataset. The FD was estimated with the surface-based morphometry (SBM) approach, sex differences were analyzed on a vertex level, and correlations between FD and age were examined. Generalized additive models (GAMs) were used to characterize the trajectories of age-related changes in 68 regions based on the Desikan-Killiany atlas. The SBM results showed sex differences in the entire sample and 3 subgroups defined by age. GAM results demonstrated that the FD values of 51 regions were significantly correlated with age. The trajectories of changes can be classified into 4 main patterns. Our results indicate that sex differences in FD are evident across developmental stages. Age-related trajectories in FD are not homogeneous across the cerebral cortex. Our results extend previous findings and provide a foundation for future investigation of the underlying mechanism.


Asunto(s)
Longevidad , Imagen por Resonancia Magnética , Adulto , Humanos , Masculino , Femenino , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Imagen por Resonancia Magnética/métodos , Fractales , Pueblos del Este de Asia , Envejecimiento , Corteza Cerebral
18.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555422

RESUMEN

Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.


Asunto(s)
Arabidopsis , Citrullus , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Filogenia , Citrullus/genética , Citrullus/metabolismo , Regulación de la Expresión Génica de las Plantas , Factor de Unión a CCAAT/metabolismo , Hormonas
19.
Sci Rep ; 12(1): 20968, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471157

RESUMEN

In order to make full use of crop waste stalk, corn-stalk cellulose (CSC) was extracted by acid-base method and used as modifier of epoxy resin (E51) to prepare the self-extracted corn-stalk cellulose/epoxy resin composites (CSCEC). Differential scanning calorimeter (DSC), thermogravimetry (TG) analysis, dynamic mechanical analysis (DMA), morphology analysis by scanning electron microscope (SEM), the mechanical properties by electronic universal testing machine and impact testing machine were used for characterization and analysis. The experimental results showed that when the CSC content was 20 wt%, the impact strength of the composite was 2.50 kJ/m2, which was 127.2% higher than that of pure epoxy resin. When the CSC content was 20 wt%, the Tg of epoxy resin obtained by DMA was the lowest, 167.4 °C, which decreased by 11.3 °C compared with that of pure epoxy resin. The SEM result showed that the fracture surface of the composite became obviously rough and had of obvious folds, which was a ductile fracture. These results indicated that the addition of CSC could toughen the epoxy resin.


Asunto(s)
Celulosa , Resinas Epoxi , Zea mays , Resistencia a la Tracción , Termogravimetría
20.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501623

RESUMEN

A modified corn straw (CS)/epoxy resin (EP) composite was prepared using bisphenol A EP (i.e., E-51) as matrix, 2-methylimidazole as curing agent, and CS modified by 3-glycidyl ether oxypropyl trimethoxysilane (KHCS) as filler. Its chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The dynamic thermodynamic properties, mechanical properties, flame retardant property, and fracture morphology were studied using dynamic mechanical analysis (DMA), a universal testing machine, a micro combustion calorimeter, and a scanning electron microscope (SEM), respectively. The effects of different contents of KHCS on various properties were discussed. The experimental result showed that the CS was bonded toKH560 by a covalent bond. The impact strength, tensile strength, and flexural strength of the composites were all improved compared with those of pure EP. When the content of KHCS was 15 wt%, the maximum impact strength of the composites was 3.31 kJ/m2, which was 1.43 times that of the pure EP. The p HRR and THR of MCSEC-20 were 512.44 W/g and 25.03 kJ/g, respectively, which were 40.71% and 27.76% lower than those of pure EP, when the content of KHCS was 20 wt%. Moreover, the mechanism of the curing composites was investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...