Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Cybern ; 53(7): 4148-4161, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37022388

RESUMEN

Hyperspectral image super-resolution (HISR) is about fusing a low-resolution hyperspectral image (LR-HSI) and a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI). Recently, convolutional neural network (CNN)-based techniques have been extensively investigated for HISR yielding competitive outcomes. However, existing CNN-based methods often require a huge amount of network parameters leading to a heavy computational burden, thus, limiting the generalization ability. In this article, we fully consider the characteristic of the HISR, proposing a general CNN fusion framework with high-resolution guidance, called GuidedNet. This framework consists of two branches, including 1) the high-resolution guidance branch (HGB) that can decompose the high-resolution guidance image into several scales and 2) the feature reconstruction branch (FRB) that takes the low-resolution image and the multiscaled high-resolution guidance images from the HGB to reconstruct the high-resolution fused image. GuidedNet can effectively predict the high-resolution residual details that are added to the upsampled HSI to simultaneously improve spatial quality and preserve spectral information. The proposed framework is implemented using recursive and progressive strategies, which can promote high performance with a significant network parameter reduction, even ensuring network stability by supervising several intermediate outputs. Additionally, the proposed approach is also suitable for other resolution enhancement tasks, such as remote sensing pansharpening and single-image super-resolution (SISR). Extensive experiments on simulated and real datasets demonstrate that the proposed framework generates state-of-the-art outcomes for several applications (i.e., HISR, pansharpening, and SISR). Finally, an ablation study and more discussions assessing, for example, the network generalization, the low computational cost, and the fewer network parameters, are provided to the readers. The code link is: https://github.com/Evangelion09/GuidedNet.

2.
IEEE Trans Neural Netw Learn Syst ; 34(2): 932-946, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34464263

RESUMEN

In this article, we propose a novel tensor learning and coding model for third-order data completion. The aim of our model is to learn a data-adaptive dictionary from given observations and determine the coding coefficients of third-order tensor tubes. In the completion process, we minimize the low-rankness of each tensor slice containing the coding coefficients. By comparison with the traditional predefined transform basis, the advantages of the proposed model are that: 1) the dictionary can be learned based on the given data observations so that the basis can be more adaptively and accurately constructed and 2) the low-rankness of the coding coefficients can allow the linear combination of dictionary features more effectively. Also we develop a multiblock proximal alternating minimization algorithm for solving such tensor learning and coding model and show that the sequence generated by the algorithm can globally converge to a critical point. Extensive experimental results for real datasets such as videos, hyperspectral images, and traffic data are reported to demonstrate these advantages and show that the performance of the proposed tensor learning and coding method is significantly better than the other tensor completion methods in terms of several evaluation metrics.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36367909

RESUMEN

Recently, the transform-based tensor nuclear norm (TNN) methods have shown promising performance and drawn increasing attention in tensor completion (TC) problems. The main idea of these methods is to exploit the low-rank structure of frontal slices of the tensor under the transform. However, the transforms in TNN methods usually treat all modes equally and do not consider the different traits of different modes (i.e., spatial and spectral/temporal modes). To address this problem, we suggest a new low-rank tensor representation based on the coupled nonlinear transform (called CoNoT) for a better low-rank approximation. Concretely, spatial and spectral/temporal transforms in the CoNoT, respectively, exploit the different traits of different modes and are coupled together to boost the implicit low-rank structure. Here, we use the convolutional neural network (CNN) as the CoNoT, which can be learned solely from an observed multidimensional image in an unsupervised manner. Based on this low-rank tensor representation, we build a new multidimensional image completion model. Moreover, we also propose an enhanced version (called Ms-CoNoT) to further exploit the spatial multiscale nature of real-world data. Extensive experiments on real-world data substantiate the superiority of the proposed models against many state-of-the-art methods both qualitatively and quantitatively.

4.
IEEE Trans Image Process ; 31: 3793-3808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35609097

RESUMEN

Recently, transform-based tensor nuclear norm (TNN) minimization methods have received increasing attention for recovering third-order tensors in multi-dimensional imaging problems. The main idea of these methods is to perform the linear transform along the third mode of third-order tensors and then minimize the nuclear norm of frontal slices of the transformed tensor. The main aim of this paper is to propose a nonlinear multilayer neural network to learn a nonlinear transform by solely using the observed tensor in a self-supervised manner. The proposed network makes use of the low-rank representation of the transformed tensor and data-fitting between the observed tensor and the reconstructed tensor to learn the nonlinear transform. Extensive experimental results on different data and different tasks including tensor completion, background subtraction, robust tensor completion, and snapshot compressive imaging demonstrate the superior performance of the proposed method over state-of-the-art methods.

5.
IEEE Trans Image Process ; 31: 984-999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34971534

RESUMEN

Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.

6.
IEEE Trans Cybern ; 52(12): 13395-13410, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34543216

RESUMEN

The general tensor-based methods can recover missing values of multidimensional images by exploiting the low-rankness on the pixel level. However, especially when considerable pixels of an image are missing, the low-rankness is not reliable on the pixel level, resulting in some details losing in their results, which hinders the performance of subsequent image applications (e.g., image recognition and segmentation). In this article, we suggest a novel multiscale feature (MSF) tensorization by exploiting the MSFs of multidimensional images, which not only helps to recover the missing values on a higher level, that is, the feature level but also benefits subsequent image applications. By exploiting the low-rankness of the resulting MSF tensor constructed by the new tensorization, we propose the convex and nonconvex MSF tensor train rank minimization (MSF-TT) to conjointly recover the MSF tensor and the corresponding original tensor in a unified framework. We develop the alternating directional method of multipliers (ADMMs) to solve the convex MSF-TT and the proximal alternating minimization (PAM) to solve the nonconvex MSF-TT. Moreover, we establish the theoretical guarantee of convergence for the PAM algorithm. Numerical examples of real-world multidimensional images show that the proposed MSF-TT outperforms other compared approaches in image recovery and the recovered MSF tensor can benefit the subsequent image recognition.

7.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7251-7265, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34106864

RESUMEN

Hyperspectral images (HSIs) are of crucial importance in order to better understand features from a large number of spectral channels. Restricted by its inner imaging mechanism, the spatial resolution is often limited for HSIs. To alleviate this issue, in this work, we propose a simple and efficient architecture of deep convolutional neural networks to fuse a low-resolution HSI (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution HSI (HR-HSI). The network is designed to preserve both spatial and spectral information thanks to a new architecture based on: 1) the use of the LR-HSI at the HR-MSI's scale to get an output with satisfied spectral preservation and 2) the application of the attention and pixelShuffle modules to extract information, aiming to output high-quality spatial details. Finally, a plain mean squared error loss function is used to measure the performance during the training. Extensive experiments demonstrate that the proposed network architecture achieves the best performance (both qualitatively and quantitatively) compared with recent state-of-the-art HSI super-resolution approaches. Moreover, other significant advantages can be pointed out by the use of the proposed approach, such as a better network generalization ability, a limited computational burden, and the robustness with respect to the number of training samples. Please find the source code and pretrained models from https://liangjiandeng.github.io/Projects_Res/HSRnet_2021tnnls.html.

8.
IEEE Trans Image Process ; 30: 3581-3596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33684037

RESUMEN

This paper addresses the tensor completion problem, which aims to recover missing information of multi-dimensional images. How to represent a low-rank structure embedded in the underlying data is the key issue in tensor completion. In this work, we suggest a novel low-rank tensor representation based on coupled transform, which fully exploits the spatial multi-scale nature and redundancy in spatial and spectral/temporal dimensions, leading to a better low tensor multi-rank approximation. More precisely, this representation is achieved by using two-dimensional framelet transform for the two spatial dimensions, one/two-dimensional Fourier transform for the temporal/spectral dimension, and then Karhunen-Loéve transform (via singular value decomposition) for the transformed tensor. Based on this low-rank tensor representation, we formulate a novel low-rank tensor completion model for recovering missing information in multi-dimensional visual data, which leads to a convex optimization problem. To tackle the proposed model, we develop the alternating directional method of multipliers (ADMM) algorithm tailored for the structured optimization problem. Numerical examples on color images, multispectral images, and videos illustrate that the proposed method outperforms many state-of-the-art methods in qualitative and quantitative aspects.

9.
IEEE Trans Neural Netw Learn Syst ; 32(8): 3664-3676, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32822310

RESUMEN

Recently emerged deep learning methods have achieved great success in single image rain streaks removal. However, existing methods ignore an essential factor in the rain streaks generation mechanism, i.e., the motion blur leading to the line pattern appearances. Thus, they generally produce overderaining or underderaining results. In this article, inspired by the generation mechanism, we propose a novel rain streaks removal framework using a kernel-guided convolutional neural network (KGCNN), achieving state-of-the-art performance with a simple network architecture. More precisely, our framework consists of three steps. First, we learn the motion blur kernel by a plain neural network, termed parameter network, from the detail layer of a rainy patch. Then, we stretch the learned motion blur kernel into a degradation map with the same spatial size as the rainy patch. Finally, we use the stretched degradation map together with the detail patches to train a deraining network with a typical ResNet architecture, which produces the rain streaks with the guidance of the learned motion blur kernel. Experiments conducted on extensive synthetic and real data demonstrate the effectiveness of the proposed KGCNN, in terms of rain streaks removal and image detail preservation.

10.
Artículo en Inglés | MEDLINE | ID: mdl-30418906

RESUMEN

Rain streaks removal is an important issue in outdoor vision systems and has recently been investigated extensively. In this paper, we propose a novel video rain streak removal approach FastDeRain, which fully considers the discriminative characteristics of rain streaks and the clean video in the gradient domain. Specifically, on the one hand, rain streaks are sparse and smooth along the direction of the raindrops, whereas on the other hand, clean videos exhibit piecewise smoothness along the rain-perpendicular direction and continuity along the temporal direction. Theses smoothness and continuity results in the sparse distribution in the different directional gradient domain, respectively. Thus, we minimize 1) the ℓ1 norm to enhance the sparsity of the underlying rain streaks, 2) two ℓ1 norm of unidirectional Total Variation (TV) regularizers to guarantee the anisotropic spatial smoothness, and 3) an ℓ1 norm of the time-directional difference operator to characterize the temporal continuity. A split augmented Lagrangian shrinkage algorithm (SALSA) based algorithm is designed to solve the proposed minimization model. Experiments conducted on synthetic and real data demonstrate the effectiveness and efficiency of the proposed method. According to comprehensive quantitative performance measures, our approach outperforms other state-of-the-art methods, especially on account of the running time. The code of FastDeRain can be downloaded at https://github.com/TaiXiangJiang/FastDeRain.

11.
Comput Intell Neurosci ; 2017: 5317850, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28781592

RESUMEN

We have proposed a patch-based principal component analysis (PCA) method to deal with face recognition. Many PCA-based methods for face recognition utilize the correlation between pixels, columns, or rows. But the local spatial information is not utilized or not fully utilized in these methods. We believe that patches are more meaningful basic units for face recognition than pixels, columns, or rows, since faces are discerned by patches containing eyes and noses. To calculate the correlation between patches, face images are divided into patches and then these patches are converted to column vectors which would be combined into a new "image matrix." By replacing the images with the new "image matrix" in the two-dimensional PCA framework, we directly calculate the correlation of the divided patches by computing the total scatter. By optimizing the total scatter of the projected samples, we obtain the projection matrix for feature extraction. Finally, we use the nearest neighbor classifier. Extensive experiments on the ORL and FERET face database are reported to illustrate the performance of the patch-based PCA. Our method promotes the accuracy compared to one-dimensional PCA, two-dimensional PCA, and two-directional two-dimensional PCA.


Asunto(s)
Reconocimiento Facial , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis de Componente Principal , Femenino , Humanos , Aumento de la Imagen , Aprendizaje Automático , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...