Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 270(Pt 2): 132391, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761914

RESUMEN

Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.

2.
Carbohydr Polym ; 333: 122003, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494201

RESUMEN

The occurrence and development of many diseases are closely related to oxidative stress. In this context, accumulating evidence suggests that Nrf2, as the master switch of cellular antioxidant signaling, plays a central role in controlling the expression of antioxidant genes. The core molecular mechanism of polysaccharides treatment of oxidative stress-induced diseases is to activate Keap1/Nrf2/ARE signaling pathway, promote nuclear translocation of Nrf2, and up-regulate the expression of antioxidant enzymes. However, recent studies have shown that other signaling pathways in which polysaccharides exert antioxidant effects, such as PI3K/Akt/GSK3ß, JNK/Nrf2 and NF-κB, have complex crosstalk with Keap1/Nrf2/ARE, may have direct effects on the nuclear translocation of Nrf2. This suggests a new strategy for designing polysaccharides as modulators of Nrf2-dependent pathways to target the antioxidant response. Therefore, in this work, we investigate the crosstalk between Keap1/Nrf2/ARE and other antioxidant signaling pathways of polysaccharides by regulating Nrf2-mediated antioxidant response. For the first time, the structural-activity relationship of polysaccharides, including molecular weight, monosaccharide composition, and glycosidic linkage, is systematically elucidated using principal component analysis and cluster analysis. This review also summarizes the application of antioxidant polysaccharides in food, animal production, cosmetics and biomaterials. The paper has significant reference value for screening antioxidant polysaccharides targeting Nrf2.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estrés Oxidativo , Polisacáridos/farmacología , Relación Estructura-Actividad
3.
Biomed Pharmacother ; 174: 116448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522241

RESUMEN

BACKGROUND: The roots and rhizomes of Nardostachys jatamansi DC. are reported to be useful for the treatment of Parkinson's disease (PD). Previous research has also shown that Nardosinone, the main active component isolated from Nardostachys jatamansi DC., exhibits the potential to treat PD. AIM OF THE STUDY: To investigate how the effects of Nardosinone could assist levodopa in the treatment of PD, how this process changes the intestinal flora, and to explore the effective forms of Nardosinone in the intestinal flora. MATERIAL AND METHODS: We used behavioral experiments, and hematoxylin-eosin staining and immunohistochemical staining, to investigate the effects of a combination of Nardosinone and levodopa on rotenone-induced PD rats. In addition, we used LC/MS-MS to determine the levels of levodopa, 5-hydroxytryptamine, dopamine and its metabolite 3, 4-dihydroxyphenylacetic acid, and homovanillic acid, to investigate the effect of the intestinal flora on co-administration in the treatment of PD. LC/MS-MS was also used to detect the metabolites of Nardosinone on the gastrointestinal tract and intestinal flora. RESULTS: The behavioral disorders and neuronal damage associated with PD were significantly improved following the co-administration. Analysis also revealed that the co-administration increased the levels of five neurotransmitters in the striatum, plasma and feces. In vitro experiments further demonstrated that the levels of dopamine and levodopa were increased in the intestinal flora. In total, five metabolites of Nardosinone were identified. CONCLUSION: Our findings indicate that Nardosinone and its metabolites might act as a potential adjutant to enhance the efficacy of levodopa via the intestinal flora, thus expanding the therapeutic potential of the combination of Chinese and Western medicine as a treatment method for PD.


Asunto(s)
Microbioma Gastrointestinal , Levodopa , Enfermedad de Parkinson , Ratas Sprague-Dawley , Levodopa/farmacología , Animales , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Ratas , Microbioma Gastrointestinal/efectos de los fármacos , Antiparkinsonianos/farmacología , Rotenona/farmacología , Nardostachys/química , Dopamina/metabolismo , Conducta Animal/efectos de los fármacos
4.
Int J Neurosci ; : 1-13, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38197183

RESUMEN

BACKGROUND: To explore the effect of Ganshuang granule on anti-alcoholic and anti-hangover and its potential mechanism. METHODS: SPF SD rats' drunken model and SPF Kunming mice's hangover model were used as models. RESULTS: Ganshuang granule could significantly reduce sleep time, the time to climb in mice, and significantly prolong the tolerance time and shorten sleep time in rats (p < 0.05). The blood ethanol concentration of rats in each administration group was lower than that in the model group at each time point (p < 0.05). Compared with the control group, the activities of ADH and ALDH in the liver of the model group were significantly decreased (p < 0.05); the content of DA and 5-HT in the striatum of the model group was significantly increased (p < 0.05); and the activity of AchE in the hippocampus was significantly decreased (p < 0.05). The above processes could be improved and regulated in the drug administration group. Compared with the control group, there was no significant difference between ADH and ALDH in the serum of the model group (p > 0.05). However, the activities of ADH and ALDH in the liver of drunk rats could be upregulated by Ganshuang granule (p < 0.05). CONCLUSION: Ganshuang granule has the pharmacological effects of anti-alcoholic and anti-hangover, which is related to regulating the activities of ADH and ALDH in the liver, the contents of DA and 5-HT in striatum, and the activity of AchE in the hippocampus.

5.
Front Aging Neurosci ; 15: 1285549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076535

RESUMEN

Background: Alzheimer's disease (AD) is a multifactorial neurodegenerative condition. The search for multi-target traditional Chinese medicines or ingredients for treating AD has attracted much attention. Corydalis rhizome (CR) is a traditional Chinese medicine. Its main components are alkaloids, which have therapeutic effects that can potentially be used for treating AD. However, no systematic study has been conducted to explore the anti-AD efficacy of CR, as well as its active compounds and mechanisms of action. Objective: The present study aimed to clarify CR's active constituents and its pharmacological mechanisms in treating AD. Methods: A D-galactose & scopolamine hydrobromide-induced AD mouse model was used and CR was administered orally. The prototypical alkaloid components were identified in the serum. The core components, key targets, and possible mechanisms of action of these alkaloids were revealed through network pharmacology. Molecular docking of the key target was performed. Finally, the mechanism was validated by lipopolysaccharide (LPS)-induced activation of BV2 microglia. Results: The results showed that CR improved anxiety-like behavior, spatial and non-spatial recognition, and memory capacity in AD mice. It also achieved synergistic AD treatment by modulating neurotransmitter levels, anti-neuroinflammation, and anti-oxidative stress. The core components that enhance CR's efficacy in treating AD are protoberberine-type alkaloids. The CR may induce the polarization of LPS-activated BV2 microglia from phenotype M1 to M2. This is partially achieved by modulating the IL-6/JAK2/STAT3 signaling pathway, which could be the mechanism by which CR treats AD through anti-inflammation. Conclusion: The present study provided a theoretical and experimental basis for the clinical application of CR in treating AD. It also provides information that aids the secondary development, and precise clinical use of CR.

6.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4110-4118, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36046901

RESUMEN

This study aims to explore the mechanism of "simultaneous treatment of the brain and the heart" of Naoxintong Capsules(NXT) under cerebral ischemia based on Toll-like receptor(TLR) signaling pathway.Male SD rats were randomized into sham operation group, model group, NXT group, and positive drug group.Middle cerebral artery occlusion(MCAO) model rats were used in model group, NXT group, and positive drug group, respectively.Neurological function was scored with the Bederson scale, and brain infarct rate was measured by 2,3,5-triphenyltetrazolium chloride(TTC) staining.Brain edema was detected with wet-dry weight method.Hematoxylin-eosin(HE) staining and TdT-mediated dUTP nick-end labeling(TUNEL) staining were used to observe and count apoptotic cardiocytes.In addition, serum myocardial enzymes were measured.The expression of 8 TLR signaling pathway-related proteins interferon-α(IFN-α), interferon regulatory factor-3(IRF3), interferon regulatory factor-7(IRF7), TLR2, TLR4, TLR7, TLR9, and tumor necrosis factor-α(TNF-α) in the cerebral cortex and heart of rats was detected by Western blot. Brain infarct rate, neurological function score, and brain water content in NXT group decreased significantly compared with those in the model group. At the same time, the reduction in apoptosis rate of cardiocytes and the content of serum aspartate aminotransferase(AST), alanine aminotransferase(ALT), creatine kinase(CK), and lactate dehydrogenase(LDH) were decreased in the NXT group.Systems pharmacological results and previous research showed that TLR signaling pathway played an important role in immune inflammatory response.The study of TLR signaling pathway and related proteins is helpful to elucidate the mechanism of "simultaneous treatment of the brain and the heart". Western blot results showed that NXT significantly inhibited the expression of IRF3, IRF7, TLR2, TLR7, and TNF-α in cerebral cortex and heart under cerebral ischemia.Cerebral ischemia influences cardiac functions, and TLR signaling pathway is one of the pathways for "simultaneous treatment of the brain and the heart" of NXT.


Asunto(s)
Isquemia Encefálica , Factor de Necrosis Tumoral alfa , Animales , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Cápsulas , Medicamentos Herbarios Chinos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Miocitos Cardíacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 7/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-35815276

RESUMEN

Ischemic stroke is often associated with a large disease burden. The existence of ischemia-reperfusion injury brings great challenges to the treatment of ischemic stroke. The purpose of this study was to explore the differences of metabolites in different parts of the brain induced by Shuxuetong injection against cerebral ischemia-reperfusion and to extend the corresponding mechanism. The rats were modeled by transient middle cerebral artery occlusion (t-MCAO) operation, and the success of modeling was determined by neurological function score and TTC staining. UPLC-Q/TOF-MS metabolomics technique and multivariate statistical analysis were used to analyze the changes and differences of metabolites in the cortex and hippocampus of cerebral ischemia-reperfusion rats. Compared with the model group, the neurological function score and cerebral infarction volume of the Shuxuetong treatment group were significantly different. There were differences and changes in the metabolic distribution of the cortex and hippocampus in each group, the distribution within the group was relatively concentrated. The separation trend between the groups was obvious, and the distribution of the Shuxuetong treatment group was similar to that of the sham operation group. We identified 13 metabolites that were differentially expressed in the cortex, including glutamine, dihydroorotic acid, and glyceric acid. We also found five differentially expressed metabolites in the hippocampus, including glutamic acid and fumaric acid. The common metabolic pathways of Shuxuetong on the cortex and hippocampus were D-glutamine and D-glutamate metabolism and nitrogen metabolism, which showed inhibition of cortical glutamine and promotion of hippocampal glutamic acid. Specific pathways of Shuxuetong enriched in the cortex included glyoxylate and dicarboxylate metabolism and pyrimidine metabolism, which showed inhibition of glyceric acid and dihydroorotic acid. Specific pathways of Shuxuetong enriched in the hippocampus include arginine biosynthesis and citrate cycle (TCA cycle), which promotes fumaric acid. Shuxuetong injection can restore and adjust the metabolic disorder of the cortex and hippocampus in cerebral ischemia-reperfusion rats. The expression of Shuxuetong in different parts of the brain is different and correlated.

8.
J Ethnopharmacol ; 293: 115244, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378193

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) has the effect of clearing heat and detoxifying, and has been considered as an effective prescription for cerebral ischemia (CI) for thousands of years in traditional Chinese medicine (TCM). It can improve the quality of life of patients with ischemic stroke, but its pharmacological mechanism remains unclear. AIM OF THE STUDY: The study aimed to explore the pharmacological action and potential mechanism of HLJDD against CI by systems pharmacology, proteomics and in vivo experiments. MATERIALS AND METHODS: In this study, databases such as TCMIP V2.0 and Genecards were used to predict compounds, targets and CI related targets, and network topology criteria of protein-protein interaction (PPI) network was used to screen core targets. The Database for Annotation, Visualization and Integrated Discovery database (DAVID) was used to discover biological processes and pathways. In addition, molecular docking was performed between the screened core biological active compounds and targets to verify the binding activity. Finally, proteomics and Western blot were performed on cerebral cortex tissues of middle cerebral artery occlusion (MCAO) model rats with HLJDD intervention to further verify the predicted results. RESULTS: 77 compounds and 308 targets of HLJDD were identified, 54 of which were predicted to be associated with cerebral ischemia. PPI network and enrichment results showed that 8 targets, including AKT1, PTGS2 and TLR4, were core targets of HLJDD in CI. And 19 signaling pathways, including Rap1 signaling pathway, cAMP signaling pathway and arachidonic acid metabolism, were identified as key pathways to the therapeutic activity of HLJDD in CI. Combined with proteomics studies, we identified that Rap1 signaling pathway and upstream and downstream targets were the key mechanisms. Molecular biology experiments showed that RAP1A and AKT expression levels were significantly up-regulated in middle cerebral artery occlusion (MCAO) rats treated with HLJDD (P < 0.0001), GRIN1 expression level was significantly down-regulated (P < 0.0001). However, ACTB expression level was slightly down-regulated (P > 0.05), which may be related to the biological function. CONCLUSION: This study confirms the pharmacological effect of HLJDD on cerebral ischemia. These results indicate that HLJDD mediates various pathways such as inhibition of apoptosis, regulation of oxygen balance, inhibition of excitatory toxicity and maintenance of basic cell functions to improve CI by regulating Rap1 signaling pathway.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Animales , Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Proteómica , Calidad de Vida , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...