Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 180: 114027, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696466

RESUMEN

As an alternative to octabromodiphenyl ether (octa-BDE), 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) has been widely used in a variety of combustible materials, such as plastics, textiles and furniture. Previous studies have demonstrated the thyroid toxicity of traditional brominated flame retardants for example octa-BDE clearly. Nevertheless, little is known about the thyroid toxicity of alternative novel brominated flame retardants BTBPE. In this study, it was demonstrated that BTBPE in vivo exposure induced FT4 reduction in 2.5, 25 and 250 mg/kg bw treated group and TT4 reduction in 25 mg/kg bw treated group. TG, TPO and NIS are key proteins of thyroid hormone synthesis. The results of Western blot and RT-PCR from thyroid tissue showed decreased protein levels and gene expression levels of TG, TPO and NIS as well as regulatory proteins PAX8 and TTF2. To investigate whether the effect also occurred in humans, anthropogenic Nthy-ori 3-1 cells were selected. Similar results were seen in vitro condition. 2.5 mg/L BTBPE reduced the protein levels of PAX8, TTF1 and TTF2, which in turn inhibited the protein levels of TG and NIS. The results in vitro experiment were consistent with that in vivo, suggesting possible thyrotoxic effects of BTBPE on humans. It was indicated that BTBPE had the potential interference of T4 generation and the study provided more evidence of the effects on endocrine disorders.

2.
Environ Toxicol ; 38(8): 1939-1950, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37102272

RESUMEN

Yttrium is a typical heavy rare earth element with widespread use in numerous sectors. Only one previous study has indicated that yttrium has the potential to cause developmental immunotoxicity (DIT). Therefore, there remains a paucity of evidence on the DIT of yttrium. This study aimed to explore the DIT of yttrium nitrate (YN) and the self-recovery of YN-induced DIT. Dams were treated with 0, 0.2, 2, and 20 mg/kg bw/day YN by gavage during gestation and lactation. No significant changes were found in innate immunity between the control and YN-treated groups in offspring. In female offspring at postnatal day 21 (PND21), YN markedly inhibited humoral and cellular immune responses, the proliferative capacity of splenic T lymphocytes, and the expression of costimulatory molecules in splenic lymphocytes. Moreover, the inhibitory effect on cellular immunity in female offspring persisted to PND42. Unlike females, YN exposure did not change the adaptive immune responses in male offspring. Overall, maternal exposure to YN showed a strong DIT to offspring, with the lowest effective dose of 0.2 mg/kg in the current study. The toxicity of cellular immunity could persist throughout development into adulthood. There were sex-specific differences in YN-induced DIT, with females being more vulnerable.


Asunto(s)
Exposición Materna , Efectos Tardíos de la Exposición Prenatal , Ratones , Humanos , Animales , Masculino , Femenino , Exposición Materna/efectos adversos , Nitratos/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratones Endogámicos BALB C , Itrio/efectos adversos
3.
Ecotoxicol Environ Saf ; 249: 114381, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508801

RESUMEN

Black carbon (BC) is an important component of atmospheric PM 2.5 and the second largest contributor to global warming. 1,4-naphthoquinone-coated BC (1,4 NQ-BC) is a secondary particle with great research value, so we chose 1,4 NQ-BC as the research object. In our study, mitochondria and lysosomes were selected as targets to confirm whether they were impaired by 1,4 NQ-BC, label free proteomics technology, fluorescent probes, qRT-PCR and western blots were used to investigate the mechanism of 1,4 NQ-BC toxicity. We found 494 differentially expressed proteins (DEPs) in mitochondria and 86 DEPs in lysosomes using a proteomics analysis of THP1 cells after 1,4 NQ-BC exposure for 24 h. Through proteomics analysis and related experiments, we found that 1,4 NQ-BC can damage THP-1-M cells by obstructing autophagy, increasing lysosomal membrane permeability, disturbing the balance of ROS, and reducing the mitochondrial membrane potential. It is worth noting that 1,4 NQ-BC prevented the removal of FTL by inhibiting autophagy, and increased IL-33 level by POR/FTL/IL-33 axis. We first applied proteomics to study the damage mechanism of 1,4 NQ-BC on THP1 cells. Our research will enrich knowledge of the mechanism by which 1,4 NQ-BC damages human macrophages and identify important therapeutic targets and adverse outcome pathways for 1,4 NQ-BC-induced damage.


Asunto(s)
Apoferritinas , Autofagia , Interleucina-33 , Lisosomas , Naftoquinonas , Hollín , Humanos , Apoferritinas/metabolismo , Autofagia/efectos de los fármacos , Interleucina-33/metabolismo , Macrófagos/efectos de los fármacos , Naftoquinonas/toxicidad , Hollín/toxicidad , Regulación hacia Arriba , Lisosomas/efectos de los fármacos
4.
Toxicol Lett ; 374: 57-67, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549429

RESUMEN

With the increasing application of cerium and rare-earth elements (REEs), cerium exposure is becoming more widespread. However, there remains a paucity of evidence on developmental immunotoxicity of cerium. This study was designed to examine the developmental immunotoxicity of gestational and postnatal exposure to cerium nitrate (CN) in BALB/C mouse offspring. Dams were given CN by oral gavage at 0, 0.002, 0.02 and 0.2 mg/kg from gestation day 5 (GD5) to postnatal day 21 (PND 21). On PND 21, the highest dose of CN significantly suppressed the NK cell cytotoxicity, and reduced the proportions of NK cells in peripheral blood and spleen of both female and male pups, however, the proportions of monocytes in peripheral blood and macrophages in spleen only increased in female pups. For adaptive immunity, on PND 21, the suppression of T/B lymphocyte proliferation, humoral and cellular immune responses (number of splenic plaque-forming cells, PFC, and delayed-type hypersensitivity, DTH) were observed in both female and male pup mice exposed to 0.2 mg/kg CN. However, the fall of proportions of T/B lymphocytes in peripheral blood (PB), spleen and mesenteric lymph node (MLN) only found in female pups at 0.2 mg/kg on PND 21. Most indications recovered to normal after 3-week cessation of CN exposure, except the reduction of DTH and PFC. From the findings in this study, the lowest-observed-adverse-effect level (LOAEL) of CN for developmental immunotoxicity was estimated to be 0.2 mg/kg bw per day.


Asunto(s)
Cerio , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratones , Animales , Masculino , Femenino , Ratones Endogámicos BALB C , Exposición Materna/efectos adversos , Bazo , Cerio/toxicidad , Efectos Tardíos de la Exposición Prenatal/patología
5.
Environ Toxicol ; 37(10): 2434-2444, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35776887

RESUMEN

Black carbon (BC) correlates with the occurrence and progression of atherosclerosis and other cardiovascular diseases. Increasing evidence has demonstrated that BC could impair vascular endothelial cells, but the underlying mechanisms remain obscure. It is known that IL-33 exerts a significant biological role in cardiovascular disease, but little is known about the molecular regulation of IL-33 expression at present. We first found that BC significantly increased IL-33 mRNA in EA.hy926 cells in a concentration and time-dependent manner, and we conducted this study to explore its underlying mechanism. We identified that BC induced mitochondrial damage and suppressed autophagy function in EA.hy926 cells, as evidenced by elevation of the aspartate aminotransferase (GOT2), reactive oxygen species (ROS) and p62, and the reduction of mitochondrial membrane potential (ΔΨm). However, ROS cannot induce IL-33 mRNA-production in BC-exposed EA.hy926 cells. Further, experiments revealed that BC could promote IL-33 mRNA production through the PI3K/Akt/AP-1 and p38/AP-1 signaling pathways. It is concluded that BC could induce oxidative stress and suppress autophagy function in endothelial cells. This study also provided evidence that the pro-cardiovascular-diseases properties of BC may be due to its ability to stimulate the PI3K/AKT/AP-1 and p38/AP-1 pathway, further activate IL-33 and ultimately result in a local vascular inflammation.


Asunto(s)
Células Endoteliales , Proteínas Proto-Oncogénicas c-akt , Carbono , Supervivencia Celular , Células Endoteliales/metabolismo , Humanos , Interleucina-33/genética , Interleucina-33/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción AP-1/metabolismo
6.
Sci Total Environ ; 835: 155357, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35452731

RESUMEN

BACKGROUND: As air pollution has been paid more attention to by public in recent years, effects and mechanism in particulate matter-triggered health problems become a focus of research. Lysosomes and mitochondria play an important role in regulation of inflammation. Interleukin-33 (IL-33) has been proved to promote inflammation in our previous studies. In this research, macrophage cell line RAW264.7 was used to explore the potential mechanism of upregulation of IL-33 induced by 1,4-naphthoquinone black carbon (1,4-NQ-BC), and to explore changes of lysosomes and mitochondria during the process. RESULTS: 50 µg/mL 1,4-NQ-BC exposure for 24 h dramatically increased expression of IL-33 in RAW264.7 cells. Lysosomal membrane permeability was damaged by 1,4-NQ-BC treatment, and higher mitochondrial membrane potential and ROS level were induced by 1,4-NQ-BC. The results of proteomics suggested that expression of ferritin light chain was increased after cells were challenged with 1,4-NQ-BC, and it was verified by Western blot. Meanwhile, expressions of p62 and LC3B-II were increased by 50 µg/mL 1,4-NQ-BC in RAW264.7 cells. Ultimately, expression of IL-33 could return to same level as control in cells treated with 50 µg/mL 1,4-NQ-BC and 50 µM deferoxamine combined. CONCLUSIONS: 1,4-NQ-BC induces IL-33 upregulation in RAW264.7 cells, and it is responsible for higher lysosomal membrane permeability and ROS level, lower mitochondrial membrane potential, and inhibition of autophagy. Ferritin light chain possibly plays an important role in the upregulation of IL-33 evoked by 1,4-NQ-BC.


Asunto(s)
Apoferritinas , Carbono , Interleucina-33 , Naftoquinonas , Animales , Apoferritinas/metabolismo , Humanos , Inflamación , Interleucina-33/metabolismo , Ratones , Naftoquinonas/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Hollín/química , Hollín/farmacología , Regulación hacia Arriba/efectos de los fármacos
7.
Toxicol Lett ; 362: 17-25, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091016

RESUMEN

Lanthanum, a major rare earth element, can exert detrimental effects on the adult immune system, but its developmental immunotoxicity (DIT) remains obscure. This study was designed to evaluate the DIT of lanthanum nitrate (LN) and the self-recovery of LN-induced DIT 21 days following cessation of exposure. BALB/c pregnant dams were exposed to 0, 0.1, 1, and 10 mg/kg body weight/day LN by gavage during gestation and lactation. Results showed that in male offspring, LN markedly inhibited the adaptive immunity at postanal day 21 (PND21) and the inhibitory effect on cellular immunity continued to PND42 (after three weeks of self-recovery). In female offspring, LN suppressed cellular immunity at both PND21 and PND42. Moreover, decreased relative organ weight of thymus, humoral immunity and proportion of double-positive T cells in thymus were also observed at PND42. Bcl-xl protein level decreased in thymus of female at PND42, while the level of ß-catenin increased. These changes might contribute to accelerating the degeneration and weight loss of thymus. Overall, in-utero and postanal exposure to LN could induce impairments of immunity in offspring, especially the female, and adaptive immunosuppression would persist throughout development into adulthood. The LOAEL of LN for DIT should be 1 mg/kg.


Asunto(s)
Lantano , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Inmunidad Humoral , Lactancia , Lantano/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...