Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Pharmaceutics ; 16(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38794259

RESUMEN

Peptides with antimicrobial activity or protease inhibitory activity are potential candidates to supplement traditional antibiotics or cancer chemotherapies. However, the potential of many peptides are limited by drawbacks such as cytotoxicity or susceptibility to hydrolysis. Therefore, strategies to modify the structure of promising peptides may represent an effective approach for developing more promising clinical candidates. In this study, the mature peptide OSTI-1949, a Kunitz-type inhibitor from Odorrana schmackeri, and four designed analogues were successfully synthesised. In contrast to the parent peptide, the analogues showed impressive multi-functionality including antimicrobial, anticancer, and trypsin inhibitory activities. In terms of safety, there were no obvious changes observed in the haemolytic activity at the highest tested concentration, and the analogue OSTI-2461 showed an increase in activity against cancer cell lines without cytotoxicity to normal cells (HaCaT). In summary, through structural modification of a natural Kunitz-type peptide, the biological activity of analogues was improved whilst retaining low cytotoxicity. The strategy of helicity enhancement by forming an artificial α-helix and ß-sheet structure provides a promising way to develop original bioactive peptides for clinical therapeutics.

2.
Front Oncol ; 14: 1348678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585004

RESUMEN

Objective: To establish a radiomics model based on intratumoral and peritumoral features extracted from pre-treatment CT to predict the major pathological response (MPR) in patients with non-small cell lung cancer (NSCLC) receiving neoadjuvant immunochemotherapy. Methods: A total of 148 NSCLC patients who underwent neoadjuvant immunochemotherapy from two centers (SRRSH and ZCH) were retrospectively included. The SRRSH dataset (n=105) was used as the training and internal validation cohort. Radiomics features of intratumoral (T) and peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were extracted from pre-treatment CT. Intra- and inter- class correlation coefficients and least absolute shrinkage and selection operator were used to feature selection. Four single ROI models mentioned above and a combined radiomics (CR: T+P1+P2+P3) model were established by using machine learning algorithms. Clinical factors were selected to construct the combined radiomics-clinical (CRC) model, which was validated in the external center ZCH (n=43). The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis. Results: Histopathological type was the only independent clinical risk factor. The model CR with eight selected radiomics features demonstrated a good predictive performance in the internal validation (AUC=0.810) and significantly improved than the model T (AUC=0.810 vs 0.619, p<0.05). The model CRC yielded the best predictive capability (AUC=0.814) and obtained satisfactory performance in the independent external test set (AUC=0.768, 95% CI: 0.62-0.91). Conclusion: We established a CRC model that incorporates intratumoral and peritumoral features and histopathological type, providing an effective approach for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.

3.
Sci Rep ; 14(1): 9253, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649416

RESUMEN

In order to realize the intelligent monitoring of the high-precision positioning of the hole position and the real-time control of the verticality of the pile, an intelligent monitoring system was developed based on the combination positioning technology of BDS and UWB and the biaxial tilt sensor, and the numerical simulation and comparative analysis of the verticality of the pile were carried out by abaqus. The deviation of pile foundation in different directions and the deviation of pile body are controlled by the monitoring system, and abnormal warning is made when the deviation exceeds the permissible range.Through the application of intelligent monitoring system in the pile foundation engineering area of Changshui Airport, it is found that the plane offset and perpendicularity of all piles meet the standard requirements and the construction error is controlled at a small value. The results show that the application of intelligent inspection system can not only ensure the construction quality of pile foundation, but also meet and improve the level of digitization and information technology of smart construction site.

4.
Int Heart J ; 65(2): 329-338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556340

RESUMEN

Hypertension and atherosclerosis often occur simultaneously. This study aimed to explore the role and mechanism of platelet microparticle (PMP) -derived microRNA-320b (miR-320b) in patients with hypertension accompanied by atherosclerosis.We collected samples from 13 controls without hypertension and atherosclerosis and 20 patients who had hypertension accompanied by atherosclerosis. In vitro, platelets were activated by Thrombin receptor-activating peptide to produce PMPs. HUVECs were induced by CoCl2 to mimic a hypoxic environment in vitro. RT-qPCR was employed to detect the expression levels of CD61, miR-320b, and ETFA. The protein expression level of ETFA was evaluated via Western blotting. Furthermore, 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and wound healing assays were employed to assess the proliferation and migration of HUVECs. Enzyme-linked immunosorbent assay was used to measure the oxidative stress and inflammation-related factor expression.The expression of miR-320b was reduced in both platelets and PMPs but increased in plasma. MiR-320b promoted CoCl2-induced HUVEC viability, proliferation, and migration. The levels of the oxidative stress factors SOD and GSH as well as the inflammatory factor IL-10 were elevated in the CoCl2 + miR-320b mimics group compared with both the CoCl2 + mimics NC and CoCl2 groups. Conversely, the levels of the oxidative stress factors MDA and ROS as well as the inflammatory factors IL-6, TNF-α, and IL-1ß were decreased. These results were regulated by miR-320b targeting ETFA.PMP-derived miR-320b inhibits the development of hypertension accompanied by atherosclerosis by targeting ETFA.


Asunto(s)
Aterosclerosis , Hipertensión , MicroARNs , Humanos , Apoptosis , Aterosclerosis/genética , Cobalto , Flavoproteínas Transportadoras de Electrones , Hipertensión/complicaciones , Hipertensión/genética , MicroARNs/metabolismo
5.
BMC Nephrol ; 25(1): 89, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448815

RESUMEN

BACKGROUND: Hyperphosphatemia is common in chronic kidney disease (CKD), associated with higher mortality in dialysis patients. Its impact in non-dialysis patients, especially those with preserved kidney function, remains uncertain. METHODS: A prospective cohort study was conducted using data from the National Health and Nutrition Examination Survey (2001-2008). Serum phosphorus was analyzed as a continuous variable, or categorized into three groups: < 3.5 mg/dL, 3.5 to < 4.5 mg/dL, and ≥ 4.5 mg/dL. Cox proportional hazards models were used to analyze the association between phosphorus with all-cause and cardiovascular disease (CVD) mortality, with or without adjustment for age, sex, race, hemoglobin, estimated glomerular filtration rate (eGFR), serum albumin, serum calcium, 25(OH)D, obesity, hypertension, diabetes, and CVD. RESULTS: A total of 7694 participants were included in the analysis, representing 28 million CKD patients in the United States. During mean 92 months of follow up, 2708 all-cause deaths (including 969 CVD deaths) were observed. Per 1 mg/dL increase in phosphorus was associated with a 13% and 24% increased risk of all-cause mortality (hazard ratio [HR], 1.13; 95%CI, 1.02-1.24) and CVD mortality (HR, 1.24; 95%CI, 1.07-1.45), respectively. Compared with the < 3.5 mg/dL, phosphorus ≥ 4.5 mg/dL was associated with a 28% and 57% increased risk of all-cause mortality (HR, 1.28; 95%CI, 1.05-1.55) and CVD mortality (HR, 1.57; 95CI, 1.19-2.08), respectively. In participants with eGFR < 60 ml/min/1.73m2, elevated phosphorus (≥ 4.5 mg/ dL) were significantly associated with increased risk of all-cause mortality (HR, 1.36; 95%CI, 1.07-1.72). No significant association was observed in eGFR ≥ 60 ml/min/1.73m2 group (HR, 1.31; 95%CI, 0.86-1.99). This correlation does not differ significantly between subgroups defined by eGFR level (P for interaction = 0.889). CONCLUSION: Serum phosphorus above 4.5 mg/dL is significantly associated with a 28% and 57% increased risk of all-cause and CVD death in non-dialysis CKD patients, respectively. This relationship still demonstrated in patients with eGFR < 60 ml/min/1.73m2. However, for population with eGFR ≥ 60 ml/min/1.73m2, further verification is needed.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Humanos , Diálisis Renal , Encuestas Nutricionales , Estudios Prospectivos , Fósforo
6.
J Agric Food Chem ; 72(7): 3741-3754, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340082

RESUMEN

Decabromodiphenyl ether (BDE-209) is a widely used brominated flame retardant that can easily detach from materials and enter into feed and foodstuffs, posing a serious risk to human and animal health and food safety of animal origin. However, the immunotoxic effects of BDE-209 on the avian spleen and the exact mechanism of the toxicity remain unknown. Therefore, we established an experimental model of BDE-209-exposed chickens and a positive control model of cyclophosphamide-induced immunosuppression in vivo and treated MDCC-MSB-1 cells and chicken splenic primary lymphocytes with BDE-209 in vitro. The results showed that BDE-209 treatment caused morphological and structural abnormalities in the chicken spleens. Mechanistically, indicators related to oxidative stress, endoplasmic reticulum stress (ERS), autophagy, and apoptosis were significantly altered by BDE-209 exposure in both the spleen and lymphocytes, but the use of the N-acetylcysteine or the 4-phenylbutyric acid significantly reversed these changes. In addition, BDE-209 exposure decreased the spleen antimicrobial peptide and immunoglobulin gene expression. In conclusion, the present research revealed that BDE-209 exposure enhanced lymphocyte autophagy and apoptosis in chicken spleen via the ROS-mediated ERS pathway. This signaling cascade regulatory relationship not only opens up a new avenue for studying BDE-209 immunotoxicity but also provides important insights into preventing BDE-209 hazards to animal health.


Asunto(s)
Pollos , Retardadores de Llama , Humanos , Animales , Pollos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bazo/metabolismo , Éteres Difenilos Halogenados/toxicidad , Éteres Difenilos Halogenados/metabolismo , Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Retardadores de Llama/toxicidad
7.
Front Cardiovasc Med ; 11: 1286271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347952

RESUMEN

Background: Due to its potential to significantly reduce scanning time while delivering accurate results for cardiac volume function, compressed sensing (CS) has gained traction in cardiovascular magnetic resonance (CMR) cine. However, further investigation is necessary to explore its feasibility and impact on myocardial strain results. Materials and methods: A total of 102 participants [75 men, 46.5 ± 17.1 (SD) years] were included in this study. Each patient underwent four consecutive cine sequences with the same slice localization, including the reference multi-breath-hold balanced steady-state free precession (bSSFPref) cine, the CS cine with the same flip angle as bSSFPref before (CS45) and after (eCS45) contrast enhancement, and the CS cine (eCS70) with a 70-degree flip angle after contrast enhancement. Biventricular strain parameters were derived from cine images. Two-tailed paired t-tests were used for data analysis. Results: Global radial strain (GRS), global circumferential strain (GCS), and global longitudinal strain (GLS) were observed to be significantly lower in comparison to those obtained from bSSFPref sequences for both the right and left ventricles (all p < 0.001). No significant difference was observed on biventricular GRS-LAX (long-axis) and GLS values derived from enhanced and unenhanced CS cine sequences with the same flip angle, but remarkable reductions were noted in GRS-SAX (short-axis) and GCS values (p < 0.001). After contrast injection, a larger flip angle caused a significant elevation in left ventricular strain results (p < 0.001) but did not affect the right ventricle. The increase in flip angle appeared to compensate for contrast agent affection on left ventricular GRS-SAX, GCS values, and right ventricular GRS-LAX, GLS values. Conclusion: Despite incorporating gadolinium contrast agents and applying larger flip angles, single breath-hold CS cine sequences consistently yielded diminished strain values for both ventricles when compared with conventional cine sequences. Prior to employing this single breath-hold CS cine sequence to refine the clinical CMR examination procedure, it is crucial to consider its impact on myocardial strain results.

8.
Sci Total Environ ; 915: 170129, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38242456

RESUMEN

Decabromodiphenyl ether (BDE-209) is one of the most widely used flame retardants that can infect domestic and wildlife through contaminated feed. Nano­selenium (Nano-Se) has the advantage of enhancing the anti-oxidation of cells. Nonetheless, it remains uncertain whether Nano-Se can alleviate vascular Endothelial cells damage caused by BDE-209 exposure in chickens. Therefore, we established a model with 60 1-day-old chickens, and administered BDE-209 intragastric at a ratio of 400 mg/kg bw/d, and mixed Nano-Se intervention at a ratio of 1 mg/kg in the feed. The results showed that BDE-209 could induce histopathological and ultrastructural changes. Additionally, exposure to BDE-209 led to cardiovascular endoplasmic reticulum stress (ERS), oxidative stress and thioredoxin-interacting protein (TXNIP)-pyrin domain-containing protein 3 (NLRP3) pathway activation, ultimately resulting in pyroptosis. Using the ERS inhibitor 4-PBA in Chicken arterial endothelial cells (PAECs) can significantly reverse these changes. The addition of Nano-Se can enhance the body's antioxidant capacity, inhibit the activation of NLRP3 inflammasome, and reduce cellular pyroptosis. These results suggest that Nano-Se can alleviate the pyroptosis of cardiovascular endothelial cells induced by BDE-209 through ERS-TXNIP-NLRP3 pathway. This study provides new insights into the toxicity of BDE-209 in the cardiovascular system and the therapeutic effects of Nano-Se.


Asunto(s)
Sistema Cardiovascular , Éteres Difenilos Halogenados , Selenio , Animales , Células Endoteliales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Pollos/metabolismo , Piroptosis , Selenio/metabolismo , Estrés del Retículo Endoplásmico
9.
Artículo en Inglés | MEDLINE | ID: mdl-38231373

RESUMEN

The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.

10.
Clin Interv Aging ; 19: 11-19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204959

RESUMEN

Objective: The incidence of hip fracture in the elderly is increasing. Robot navigation technology has the advantages of minimally invasive and accurate. To explore the difference between the clinical effects of proximal femoral anti-rotation intramedullary nail (PFNA) assisted by robot navigation in the treatment of femoral intertrochanteric fracture and traditional PFNA in the treatment of femoral intertrochanteric fracture in the elderly; analyze the advantages and feasibility of PFNA assisted by robot navigation in the treatment of femoral intertrochanteric fracture in the elderly. Patients and Methods: From February 2021 to October 2022, the elderly (>65 years old) with femoral intertrochanteric fracture underwent surgery in our center. Divided the patients included in the study into 2 groups based on the surgical method. The surgical method of robot group was PFNA fixation assisted by robot navigation, while the surgical method of traditional group was classic PFNA fixation, Baseline data (general condition, Evans classification, time from injury to operation, preoperative hemoglobin) and observation indicators (intraoperative bleeding, operation time, the length of incision for mail nail insertion, postoperative hemoglobin drop, blood transfusion rate and the Harris score of hip joint 1 year after operation) of the two groups were collected to compare whether there were differences between the two groups. Results: There was no statistical difference in baseline data between the two groups (P>0.05). The intraoperative bleeding in the robot group was 68.17±10.66 mL, the intraoperative bleeding in the traditional group was 174±8.11mL (P<0.001). The operation time in the robot group was 68.81 ± 6.89 min, in the traditional group, the operation time was 76.94 ± 8.18 min (P<0.001). The length of incision for mail nail insertion in the robot group was 3.53 ± 0.63 cm, the length of the incision for mail nail insertion in the traditional group was 4.23 ± 0.71 cm (P<0.001). 5 patients (13.9%) in the robot group received blood transfusion treatment, and 13 patients (36.1%) in the traditional group received blood transfusion treatment (P=0.029). The hemoglobin in the robot group decreased by 14.81 ± 3.27 g/l after operation compared with that before operation, while that in the traditional group decreased by 16.69 ± 3.32 g/l (P=0.018). The Harris score of the hip joint of the affected limb in the robot group was excellent in 25 cases, good in 8 cases and poor in 3 cases one year after the operation; In the traditional group, Harris scores were excellent in 18 cases, good in 11 cases and poor in 7 cases (P=0.021). Conclusion: PFNA fixation of femoral intertrochanteric fracture with robot navigation assistance has the advantages of minimally invasive and accurate, shorter operation time, less bleeding and lower blood transfusion rate than traditional surgical methods, and has certain advantages in reducing postoperative complications of elderly patients.


Asunto(s)
Fracturas del Fémur , Fracturas de Cadera , Robótica , Anciano , Humanos , Estudios Retrospectivos , Fracturas de Cadera/cirugía , Hemoglobinas
11.
J Hazard Mater ; 465: 133307, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38154185

RESUMEN

Decabromodiphenyl ether (BDE209) is a toxic environmental pollutant that can cause neurotoxicity, behavioral abnormalities, and cognitive impairment in animals. However, the specific mechanisms of BDE209-induced neurological injury and effective preventative and therapeutic interventions are lacking. Even though selenomethionine (Se-Met) has a significant detoxification effect and protects the nervous system, it remains unclear whether Se-Met can counteract the toxic effects of BDE209. For the in vivo test, we randomly divided 60 1-week-old hy-line white variety chicks into the Con, BDE209, Se-Met, and BDE209 +Se-Met groups. In vitro experiments were performed, exposing chick embryo brain neurons to BDE209, Se-Met, N-Acetylcysteine (NAC, a ROS inhibitor), and RSL3 (a GPX4 inhibitor). We demonstrated that BDE209 induced oxidative stress and ferroptosis in the chicken brain, which mainly manifested as mitochondrial atrophy, cristae breakage, increased Fe2+ and MDA content, decreased antioxidant enzyme activity, and the inhibition of the NRF2/GPX4 signaling pathway in the brain neurons. However, Se-Met supplementation reversed these changes by activating the NRF2/GPX4 pathway, reducing mitochondrial damage, enhancing antioxidant enzyme activity, and alleviating ferroptosis. This study provides insight into the mechanism of BDE209-related neurotoxicity and suggests Se-Met as an effective preventative and control measure against BDE209 poisoning.


Asunto(s)
Ferroptosis , Éteres Difenilos Halogenados , Selenometionina , Embrión de Pollo , Animales , Pollos , Factor 2 Relacionado con NF-E2 , Antioxidantes , Estrés Oxidativo , Encéfalo
12.
Comput Struct Biotechnol J ; 21: 5719-5737, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074470

RESUMEN

In recent decades, antimicrobial peptides (AMPs) have held great promise as novel antibiotic agents. However, they have generally been excluded from clinical use due to certain limitations, such as poor biocompatibility and sensitivity to environmental conditions. In this study, we report a novel brevinin-1 type antimicrobial peptide B1LTe, derived from the skin secretion of Hylarana latouchii. Although the novel peptide B1LTe exhibited remarkable antimicrobial effects, its narrow therapeutic index (TI) can result in adverse drug reactions. Thus, the rational design by systematically scanning and replacing the inherent hydrophobic and cationic residues (Leucine and Lysine) with their D-enantiomeric counterparts was conducted to enhance the application potential of B1LTe. Simultaneously, we also applied lysine-to-arginine substitution within the modification. Among the derivates, 5 R demonstrated the highest selectivity and effectiveness against Methicillin-resistant Streptococcus aureus (MRSA), clinic-isolated Streptococcus pyogenes (S. pyogenes) strain, ranging from their planktonic to biofilm cells, both in vitro and in vivo. Furthermore, the remarkable adaptation of 5 R in saline and 20% serum indicates its potential for clinical application. We employed the in silico approach, which revealed the mechanism of interaction between 5 R and bacterial membranes. In addition, further mechanistic studies of 5 R elucidated the association between the collapsed proton motive force (PMF) and membrane perturbation as peptides aggregate on the bacterial membrane. Overall, our study suggests the D-enantiomeric 5 R can be a promising antibiotic agent against MDR bacteria in further clinical development and highlights the significance of cellular PMF as a potential target for the research of peptides' mode of action.

13.
Pestic Biochem Physiol ; 196: 105625, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945258

RESUMEN

Cypermethrin (CYP, IUPAC name: [cyano-(3-phenoxyphenyl)methyl] 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate) is a pyrethroid insecticide that poses a threat to the health of humans and aquatic animals due to its widespread use and environmental contamination. However, the mechanism of CYP on apoptosis, autophagy and inflammation in hepatocytes of carp (Cyprinus carpio) is unknown. We hypothesized that CYP caused damage to hepatocytes through the endoplasmic reticulum stress (ERS) pathway, CCK-8 was used to detect the toxic effects of different doses of CYP on hepatocytes, and finally low (L, 10 µM), medium (M, 40 µM), and high (H, 80 µM) doses of CYP was selected to construct the model. ROS staining, oxidative stress-related indices (MDA, CAT, T-AOC, SOD), AO/EB staining, MDC staining, and the expression levels of related genes were detected using qRT-PCR and western blot. Our results showed that CYP exposure resulted in an increase in ROS production, an increase in MDA content, and a decrease in the activity of CAT, SOD, and T-AOC in hepatocytes; the proportion of apoptotic, necrotic, and autophagic cells increased significantly in a dose-dependent manner. We also found that CYP exposure increased the expression levels of endoplasmic reticulum-related genes (GRP78, PERK, IRE-1, ATF-6 and CHOP), apoptosis (Bcl-2, Bax, Caspase-3, Caspase-9 and Cyt-c) and autophagy-related genes (LC3b, Beclin1 and P62) also showed dose-dependent changes, and the expression levels of inflammation-related genes (NF-κB, TNF-α, IL-1ß, IL-6) were also significantly elevated. Thus, we demonstrated that CYP exposure caused apoptosis, autophagy and inflammation in hepatocytes via ERS-ROS-NF-κB axis. This research contributes to our understanding of the molecular mechanisms underlying CYP-induced damage in hepatocytes of carp (Cyprinus carpio).


Asunto(s)
Carpas , Piretrinas , Humanos , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carpas/metabolismo , Apoptosis , Piretrinas/toxicidad , Hepatocitos , Inflamación/inducido químicamente , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Autofagia , Estrés del Retículo Endoplásmico
14.
Sensors (Basel) ; 23(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005499

RESUMEN

The rapid development and extensive application of the Internet of Things (IoT) have brought new challenges and opportunities to the field of communication. By integrating quantum secure communication with the IoT, we can provide a higher level of security and privacy protection to counteract security threats in the IoT. In this paper, a hybrid quantum communication scheme using six-qubit entangled states as a channel is proposed for specific IoT application scenarios. This scheme achieves hierarchical control of communication protocols on a single quantum channel. In the proposed scheme, device A transmits data to device B through quantum teleportation, while device B issues control commands to device A through remote quantum state preparation technology. These two tasks are controlled by control nodes C and D, respectively. The transmission of information from device A to device B is a relatively less important task, which can be solely controlled by control node C. On the other hand, issuing control commands from device B to device A is a more crucial task requiring joint control from control nodes C and D. This paper describes the proposed scheme and conducts simulation experiments using IBM's Qiskit Aer quantum computing simulator. The results demonstrate that the fidelity of the quantum teleportation protocol (QTP) and the remote state preparation protocol (RSP) reach an impressive value of 0.999, fully validating the scheme's feasibility. Furthermore, the factors affecting the fidelity of the hybrid communication protocol in an IoT environment with specific quantum noise are analyzed. By combining the security of quantum communication with the application scenarios of the IoT, this paper presents a new possibility for IoT communication.

15.
Artículo en Inglés | MEDLINE | ID: mdl-37864633

RESUMEN

Currently, atherosclerosis, characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel, is considered to be a metabolic disease. As the most abundant innate immune cells in the body, macrophages play a key role in the onset, progression, or regression of atherosclerosis. For example, macrophages exhibit several polarization states in response to microenvironmental stimuli; an increasing proportion of macrophages, polarized toward M2, can suppress inflammation, scavenge cell debris and apoptotic cells, and contribute to tissue repair and fibrosis. Additionally, specific exosomes, generated by macrophages containing certain miRNAs and effective efferocytosis of macrophages, are crucial for atherosclerosis. Therefore, macrophages have emerged as a novel potential target for anti-atherosclerosis therapy. This article reviews the role of macrophages in atherosclerosis from different aspects: origin, phenotype, exosomes, and efferocytosis, and discusses new approaches for the treatment of atherosclerosis.

16.
Sensors (Basel) ; 23(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37896568

RESUMEN

With the continuous development of the Internet of Things (IoT) technology, the industry's awareness of the security of the IoT is also increasing, and the adoption of quantum communication technology can significantly improve the communication security of various devices in the IoT. This paper proposes a scheme of controlled remote quantum state preparation and quantum teleportation based on multiple communication parties, and a nine-qubit entanglement channel is used to achieve secure communication of multiple devices in the IoT. The channel preparation, measurement operation, and unitary operation of the scheme were successfully simulated on the IBM Quantum platform, and the entanglement degree and reliability of the channel were verified through 8192 shots. The scheme's application in the IoT was analyzed, and the steps and examples of the scheme in the secure communication of multiple devices in the IoT are discussed. By simulating two different attack modes, the effect of the attack on the communication scheme in the IoT was deduced, and the scheme's high security and anti-interference ability was analyzed. Compared with other schemes from the two aspects of principle and transmission efficiency, it is highlighted that the advantages of the proposed scheme are that it overcomes the single fixed one-way or two-way transmission protocol form of quantum teleportation in the past and can realize quantum communication with multiple devices, ensuring both security and transmission efficiency.

17.
Molecules ; 28(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894673

RESUMEN

The first total syntheses of cyclic depsipeptides colletopeptide A and colletotrichamide A, have been accomplished. The key advanced intermediate, a cyclic tridepsipeptide derivative, was constructed using a sequence of transformations that features asymmetric Brown crotylation, cross metathesis, Yamaguchi esterification, ozonolysis, and macrolactamization. A late-stage incorporation of the mannose fragment completed the synthesis of colletotrichamide A, and the desilylation of the common intermediate gave rise to colletopeptide A, which led to unambiguous confirmation of the absolute stereochemistry of the aforementioned natural products.


Asunto(s)
Productos Biológicos , Depsipéptidos , Estereoisomerismo , Esterificación
18.
Fish Shellfish Immunol ; 141: 109046, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37661035

RESUMEN

Lambda-cyhalothrin (LC), a pyrethroid insecticide widely used in agriculture, causes immunotoxicity to aquatic organisms in the aquatic environment. Microalgal astaxanthin (MA) is a natural carotenoid that enhances viability of a variety of fish. To investigate the immunotoxicity of LC and the improvement effect of MA in lymphocytes (Cyprinus carpio), lymphocytes were treated with LC (80 M) and/or MA (50 M) for 24 h. Firstly, CCK8 combined with PI staining results showed that MA significantly attenuated the LC-induced lymphocyte death rate. Secondly, LC exposure resulted in excessively damaged mitochondrial and mtROS, diminished mitochondrial membrane potential and ATP content, which could be improved by MA. Thirdly, MA upregulated the levels of mitophagy-related regulatory factors (Beclin1, LC3, ATG5, Tom20 and Lamp2) induced by LC. Importantly, MA decreased the levels of pyroptosis-related genes treated with LC, including NLRP3, Cas-4, GSDMD and active Cas-1. Further study indicated that LC treatment caused excessive miRNA-194-5p and reduced levels of FoxO1, PINK1 and Parkin, which was inhibited by MA treatment. Overall, we concluded that MA could enhance damaged mitochondrial elimination by promoting the miRNA-194-5p-FoxO1-PINK1/Parkin-mitophagy in lymphocytes, which reduced mtROS accumulation and alleviated pyroptosis. It offers insights into the importance of MA application in aquaculture as well as the defense of farmed fish against agrobiological hazards in fish under LC.

19.
Molecules ; 28(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764334

RESUMEN

The emergence of multidrug-resistant bacteria has severely increased the burden on the global health system, and such pathogenic infections are considered a great threat to human well-being. Antimicrobial peptides, due to their potent antimicrobial activity and low possibility of inducing resistance, are increasingly attracting great interest. Herein, a novel dermaseptin peptide, named Dermaseptin-SS1 (SS1), was identified from a skin-secretion-derived cDNA library of the South/Central American tarsier leaf frog, Phyllomedusa tarsius, using a 'shotgun' cloning strategy. The chemically synthesized peptide SS1 was found to be broadly effective against Gram-negative bacteria with low haemolytic activity in vitro. A designed synthetic analogue of SS1, named peptide 14V5K, showed lower salt sensitivity and more rapid bacteria killing compared to SS1. Both peptides employed a membrane-targeting mechanism to kill Escherichia coli. The antiproliferative activity of SS1 and its analogues against lung cancer cell lines was found to be significant.


Asunto(s)
Péptidos Antimicrobianos , Tarsiidae , Humanos , Animales , Anuros , Piel , Escherichia coli
20.
Microorganisms ; 11(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37630637

RESUMEN

Indole-3-acetic acid (IAA) belongs to the family of auxin indole derivatives. IAA regulates almost all aspects of plant growth and development, and is one of the most important plant hormones. In microorganisms too, IAA plays an important role in growth, development, and even plant interaction. Therefore, mechanism studies on the biosynthesis and functions of IAA in microorganisms can promote the production and utilization of IAA in agriculture. This mini-review mainly summarizes the biosynthesis pathways that have been reported in microorganisms, including the indole-3-acetamide pathway, indole-3-pyruvate pathway, tryptamine pathway, indole-3-acetonitrile pathway, tryptophan side chain oxidase pathway, and non-tryptophan dependent pathway. Some pathways interact with each other through common key genes to constitute a network of IAA biosynthesis. In addition, functional studies of IAA in microorganisms, divided into three categories, have also been summarized: the effects on microorganisms, the virulence on plants, and the beneficial impacts on plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...