Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Imeta ; 2(1): e71, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868345

RESUMEN

The article provides a pipeline for comparing microbial co-occurrence networks based on the R microeco package and meconetcomp package. It has high flexibility and expansibility and can help users efficiently compare networks built from different groups of samples or different construction approaches.

2.
Infect Drug Resist ; 12: 1719-1728, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354320

RESUMEN

BACKGROUND: Staphylococcus aureus is among the most common causes of health care- and community-associated infections worldwide. The distributions of different S. aureus clones change over time and also vary geographically. The purpose of this study was to determine the molecular type and antimicrobial resistance profiles of clinical S. aureus strains isolated in Urumqi, Northwestern China. METHODS: A total of 605 clinical S. aureus isolates were collected from Xinjiang Military General Hospital, in Urumqi. Protein A-encoding (spa) typing, multilocus sequence typing, staphylococcal chromosomal cassette mec typing, Panton-Valentine leucocidin (pvl) gene detection, and antimicrobial resistance profiling were performed. RESULTS: Among these strains, 271 isolates (44.7%) were methicillin-resistant S. aureus (MRSA) and 334 (55.3%) were methicillin-susceptible S. aureus (MSSA). The MRSA strains consisted of 22 spa types and 14 sequence types (STs). ST239-MRSA-III-t030 (73.1%, 198/271) and ST59-MRSA-IV-t437 (11.8%, 32/271) were the most common, and ST22-MRSA-IV-t309 was the rarest (2.02%, 6/271). The MSSA strains consisted of 93 spa types and 29 STs. ST22, ST121, ST398, ST5, ST7, ST188, and ST15 were the main MSSA STs, and ST22-MSSA-t309 was most common (26.0%, 87/334). The pvl gene was present in 20.3% of all S.aureus strains, and 80.8% (88/99) of ST22-MSSA strains harbored the pvl gene. A total of 85.7% pvl-positive ST22-MSSA strains were spa t309 (85/99), and 87.5% of pvl-positive ST22-MSSA strains were from abscesses or wounds (skin and soft tissue infections). All ST239-MRSA strains were resistant to gentamicin (GEN), levofloxacin (LEV), ciprofloxacin (CIP), moxifloxacin (MXF), rifampicin (RIF), and tetracycline (TET). Among the ST59-MRSA strains, over 70.0% were resistant to erythromycin (ERY), clindamycin (CLI), and TET. ST22-MSSA remained susceptible to most antibiotics, but was resistant to PEN (97.0%), ERY (57.6%), and CLI (15.2%). CONCLUSION: Our major results indicated that the antimicrobial resistance profiles and pvl genes of S. aureus isolates from Urumqi were closely associated with clonal lineage. ST239-MRSA-III-t030 and pvl-positive ST22-MSSA-t309 were the most common clones in this region of Northwestern China.

3.
Cancer Cell Int ; 19: 152, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164797

RESUMEN

BACKGROUND: Recently, lncRNA-Testis developmental related gene 1 (TDRG1) was proved to be a key modulator in reproductive organ-related cancers. The biological role of TDRG1 in cervical cancer (CC) progression remains largely unknown. METHOD: Real-time PCR (qRT-PCR) examined the expression level of TDRG1, microRNA (miR)-326 and MAPK1 mRNA. OS tissues and corresponding relative normal tissues, as well as CC cell lines and normal cell line Ect1/E6E7 were collected to determine the expression of TDRG1 in CC. MTT, colony formation, wound-healing, transwell and flow cytometer assay detected the influence of TDRG1 and miR-326 on CC cells growth, metastasis and apoptosis. Western blot examined proteins level. Bioinformatics, RNA pull-down assay, RNA immunoprecipitation and dual-luciferase reporter assays detected the molecular mechanism of TDRG1 in CC. Xenograft tumour model was established to determine the role of TDRG1 in vivo. RESULTS: The expression of TDRG1 was significantly increased in CC tissues and cell lines compared with normal tissue and normal cell line respectively and its expression was associated with clinicopathological characteristics of CC patients. Knockdown of TDRG1 inhibited the cell proliferation, migration and invasion in Hela and SIHA cells. Moreover, TDRG1 directly interacted with miR-326, and the inhibition effect on cell growth and metastasis induced by TDRG1 siRNA can be abrogated by miR-326 silencing by its inhibitor in Hela and SIHA cells. Further, MAPK1 was proved to be a direct target of miR-326, and its expression was negatively regulated by miR-326 while positively modulated by TDRG1. CONCLUSION: TDRG1 acts as a competing endogenous lncRNA (ceRNA) to modulate MAPK1 by sponging miR-326 in CC, shedding new light on TDRG1-directed diagnostics and therapeutics in CC.

4.
J Cell Biochem ; 120(3): 4545-4554, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30302792

RESUMEN

OBJECTIVE: The aim of this study is to investigate the role of molecular mechanism of microRNA (miR)-21 on tight junction (TJ)-proteins and its protective effects on the intestinal barrier. METHODS: TJ proteins and target genes expression were analyzed in miR-21 inhibition and overexpression NCM460 cell lines. To further verify the role of miR-21, the mmu-miR-21 intestinal epithelial conditional knockout (IKO) mice model was established. MiR-21 expression was detected in clinical specimens of acute stercoral obstruction patients. RESULTS: Rho-associated protein kinase 1 (ROCK1) were identified as target genes of miR-21. There is a negative correlation between miR-21 expression level and TJ proteins levels. TJ protein and ROCK1 were significantly decreased in miR-21 IKO mice, which presented intestinal inflammation response and intestinal barrier dysfunction (both P < 0.05). Determination of clinical samples showed consistent results with NCM460 cell line and miR-21 IKO mice. CONCLUSIONS: MiR-21 could be a protective factor of intestinal barrier dysfunction, which promoting the expression of TJ protein by targeting ROCK1 in vivo and in vitro.


Asunto(s)
Mucosa Intestinal/metabolismo , MicroARNs/metabolismo , Ocludina/biosíntesis , Quinasas Asociadas a rho/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , MicroARNs/genética , Ocludina/genética , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Quinasas Asociadas a rho/genética
5.
Cell Physiol Biochem ; 45(1): 343-355, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29402773

RESUMEN

BACKGROUND/AIMS: Let-7b was dramatically reduced after a dicer knockout of mice with intestinal barrier function injuries. This paper aims to investigate the molecular mechanism of let-7b by targeting p38 MAPK in preventing intestinal barrier dysfunction. METHODS: A total of 186 patients were enrolled, with 93 in the control group and 93 in the PRO group. Only 158 patients completed the entire study, whereas the others either did not meet the inclusion criteria or refused to participate. To further verify the role of let-7b, intestinal epithelial conditional knockout (IKO) mice of mmu-let-7b model were established. Serum let-7b, zonulin, IL-6, and TNF-α concentrations were measured by ELISA or quantitative RT-PCR. Permeability assay was done by ussing chamber. The apoptotic cells were identified using an In Situ Cell Death Detection Kit. Protein was detected by western blot. RESULTS: Probiotics can lower infection-related complications, as well as increase the serum and tissue let-7b levels. P38 MAPK was identified as the target of let-7b, as verified by NCM460 cells. P38 MAPK expression was increased, whereas tight-junction (TJ) proteins were significantly decreased in let-7b IKO mice (both P<0.05). Negative regulation of p38 MAPK molecular signaling pathways was involved in the protective effects of let-7b on intestinal barrier function. CONCLUSION: Let-7b was identified as a novel diagnosis biomarker or a potential treatment target for preventing intestinal barrier dysfunction.


Asunto(s)
Enfermedades Gastrointestinales/diagnóstico , MicroARNs/metabolismo , Ocludina/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adulto , Anciano , Animales , Biomarcadores/metabolismo , Toxina del Cólera/sangre , Toxina del Cólera/genética , Toxina del Cólera/metabolismo , Colon/patología , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/metabolismo , Haptoglobinas , Humanos , Interleucina-6/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Ocludina/metabolismo , Precursores de Proteínas , Transducción de Señal , Factor de Necrosis Tumoral alfa/sangre
6.
Cell Physiol Biochem ; 42(2): 848-858, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28641303

RESUMEN

BACKGROUND/AIMS: This study aimed to investigate the role of microRNA (miR)-122a in regulating zonulin during the modulation of intestinal barrier. METHODS: Zonulin proteins and their target gene expression were analyzed in miR-122a-overexpressing cell lines and in the target gene of epidermal growth factor receptor (EGFR). An mmu-miR-122a intestinal epithelial conditional transgenic (miR-122a-TG) mouse model was established to investigate EGFR and zonulin expression. MiR-122a was also detected in the clinical specimens of inflammatory bowel disease. RESULTS: EGFR was identified as a target gene of miR-122a. The expression level of miR-122a was positively correlated with that of zonulin. The expression level of zonulin was significantly increased, whereas the expression level of EGFR was significantly decreased in the miR-122a-TG mice and in the corresponding primary epithelial culture (P < 0.05). These results were consistent with the data of the clinical specimens. CONCLUSIONS: miR-122a could be a positive factor of zonulin by targeting EGFR, which increased the intestinal epithelial permeability in vivo and in vitro.


Asunto(s)
Toxina del Cólera/biosíntesis , Receptores ErbB/biosíntesis , Mucosa Intestinal/metabolismo , MicroARNs/genética , Animales , Toxina del Cólera/genética , Receptores ErbB/genética , Regulación de la Expresión Génica , Haptoglobinas , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Transgénicos , Permeabilidad , Precursores de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA