Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3091, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600119

RESUMEN

The accurate perception of multiple flight parameters, such as the angle of attack, angle of sideslip, and airflow velocity, is essential for the flight control of micro air vehicles, which conventionally rely on arrays of pressure or airflow velocity sensors. Here, we present the estimation of multiple flight parameters using a single flexible calorimetric flow sensor featuring a sophisticated structural design with a suspended array of highly sensitive vanadium oxide thermistors. The proposed sensor achieves an unprecedented velocity resolution of 0.11 mm·s-1 and angular resolution of 0.1°. By attaching the sensor to a wing model, the angles of attack and slip were estimated simultaneously. The triaxial flight velocities and wing vibrations can also be estimated by sensing the relative airflow velocity due to its high sensitivity and fast response. Overall, the proposed sensor has many promising applications in weak airflow sensing and flight control of micro air vehicles.

2.
Biomimetics (Basel) ; 9(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38534875

RESUMEN

Hydrodynamic pressure sensors offer an auxiliary approach for ocean exploration by unmanned underwater vehicles (UUVs). However, existing hydrodynamic pressure sensors often lack the ability to monitor subtle hydrodynamic stimuli in deep-sea environments. In this study, we present the development of a deep-sea hydrodynamic pressure sensor (DSHPS) capable of operating over a wide range of water depths while maintaining exceptional hydrodynamic sensing performance. The DSHPS device was systematically optimized by considering factors such as piezoelectric polyvinylidene fluoride-trifluoroethylene/barium titanate [P(VDF-TrFE)/BTO] nanofibers, electrode configurations, sensing element dimensions, integrated circuits, and packaging strategies. The optimized DSHPS exhibited a remarkable pressure gradient response, achieving a minimum pressure difference detection capability of approximately 0.11 Pa. Additionally, the DSHPS demonstrated outstanding performance in the spatial positioning of dipole sources, which was elucidated through theoretical charge modeling and fluid-structure interaction (FSI) simulations. Furthermore, the integration of a high Young's modulus packaging strategy inspired by fish skull morphology ensured reliable sensing capabilities of the DSHPS even at depths of 1000 m in the deep sea. The DSHPS also exhibited consistent and reproducible positioning performance for subtle hydrodynamic stimulus sources across this wide range of water depths. We envision that the development of the DSHPS not only enhances our understanding of the evolutionary aspects of deep-sea canal lateral lines but also paves the way for the advancement of artificial hydrodynamic pressure sensors.

3.
Chem Sci ; 15(6): 2205-2210, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38332810

RESUMEN

Pyrroloindolines are important structural units in nature and the pharmaceutical industry, however, most approaches to such structures involve transition-metal or photoredox catalysts. Herein, we describe the first tandem SET/radical cyclization/intermolecular coupling between 2-azaallyl anions and indole acetamides. This method enables the transition-metal-free synthesis of C3a-substituted pyrroloindolines under mild and convenient conditions. The synthetic utility of this transformation is demonstrated by the construction of an array of C3a-methylamine pyrroloindolines with good functional group tolerance and yields. Gram-scale sequential one-pot synthesis and hydrolysis reactions demonstrate the potential synthetic utility and scalability of this approach.

4.
Sci Adv ; 9(41): eadi4843, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824620

RESUMEN

Robust and reversible wet attachments are important for medical engineering and wearable electronics. Although ultrastrong capillarity from interfacial nano-thick liquid bridges creates tree frog's strong wet friction, its unstable nano-liquid characteristic challenges further wet friction enhancement. Here, unique hierarchical micro-nano fibrous pillars have been discovered on Chinese bush crickets exhibiting a robust wet friction ~3.8 times higher than tree frog's bulk pillar. By introducing a nano-fibrous pillar array covered with thin films (NFPF), the pillar's separation position switches from the rear to front side compared with bulk pillars, indicating the interfacial contact stress shifting from compressing to stretching. This largely decreases the interfacial separation stress to form more stable and larger nano-liquid bridges. The NFPF array with self-splitting of interfacial liquid and contact stress further guards such interfacial stress shifting to ensure a ~1.9 times friction enhancement. Last, the theories are established, and the applications on wearable electronics are validated.

5.
ACS Appl Mater Interfaces ; 15(33): 39570-39577, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37561408

RESUMEN

Aiming to develop a self-powered bioelectric tag for fish behavioral studies, here we present a fish-wearable piezoelectric nanogenerator (FWPNG) that can simultaneously harvest the strain energy and the flow impact energy caused by fish-tailing. The FWPNG is fabricated by transferring a 2 µm-thick Nb0.02-Pb(Zr0.6Ti0.4)O3 (PZT) layer from a silicon substrate to a spin-coated polyimide film via a novel zinc oxide (ZnO) release process. The open-circuit voltage of the strain energy harvester reaches 2.3 V under a strain of 1% at an ultra-low frequency of 1 Hz, and output voltage of the impact energy harvester reaches a 0.3 V under a pressure of 82.6 kPa at 1 Hz, which is in good agreement with our theoretical analysis. As a proof-of-concept demonstration, an event-driven underwater acoustic transmitter is developed by utilizing the FWPNG as a trigger switch. Acoustic transmission occurs when the amplitude of fish-tailing is larger than a preset threshold. The dual-modal FWPNG device shows the potential application in self-powered biotags for animal behavioral studies and ocean explorations.

6.
J Am Chem Soc ; 145(29): 16045-16057, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37441806

RESUMEN

Hydrogen atom transfer (HAT) processes are among the most useful approaches for the selective construction of C(sp3)-C(sp3) bonds. 1,5-HAT with heteroatom-centered radicals (O•, N•) have been well established and are favored relative to other 1,n-HAT processes. In comparison, net 1,2-HAT processes have been observed infrequently. Herein, the first amidyl radicalls are reported that preferentially undergo a net 1,2-HAT over 1,5-HAT. Beginning with single electron transfer from 2-azaallyl anions to N-alkyl N-aryloxy amides, the latter generate amidyl radicals. The amidyl radical undergoes a net-1,2-HAT to generate a C-centered radical that participates in an intermolecular radical-radical coupling with the 2-azaallyl radical to generate 1,2-diamine derivatives. Mechanistic and EPR experiments point to radical intermediates. Density functional theory calculations provide support for a base-assisted, stepwise-1,2-HAT process. It is proposed that the generation of amidyl radicals under basic conditions can be greatly expanded to access α-amino C-centered radicals that will serve as valuable synthetic intermediates.

7.
RSC Adv ; 13(22): 15190-15198, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37213335

RESUMEN

Novel nanorod aerogels have gained tremendous attention owing to their unique structure. However, the intrinsic brittleness of ceramics still severely limits their further functionalization and application. Here, based on the self-assembly between one-dimensional (1D) Al2O3 nanorods and two-dimensional (2D) graphene sheets, lamellar binary Al2O3 nanorod-graphene aerogels (ANGAs) were prepared by the bidirectional freeze-drying technique. Thanks to the synergistic effect of rigid Al2O3 nanorods and high specific extinction coefficient elastic graphene, the ANGAs not only exhibit robust structure and variable resistance under pressure, but also possess superior thermal insulation properties compared to pure Al2O3 nanorod aerogels. Therefore, a series of fascinating features such as ultra-low density (3.13-8.26 mg cm-3), enhanced compressive strength (6 times higher than graphene aerogel), excellent pressure sensing durability (500 cycles at 40% strain) and ultra-low thermal conductivity (0.0196 W m-1 K-1 at 25 °C and 0.0702 W m-1 K-1 at 1000 °C) are integrated in ANGAs. The present work provides fresh insight into the fabrication of ultralight thermal superinsulating aerogels and the functionalization of ceramic aerogels.

8.
Adv Mater ; 35(31): e2300624, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37038691

RESUMEN

Achieving high catalytic performance through the lowest possible content of platinum (Pt) is the key to cost reduction of proton-exchange-membrane fuel cells (PEMFCs). However, lowering the Pt loading in PEMFCs leads to the high mass-transport resistance of oxygen originating from the limited active sites, and causes less stability of the catalysts due to Pt size growth after long-time operation. Herein, Pt-metal/metal-N-C aerogel catalysts are designed that substantially reduce oxygen-related mass transport resistance and have long-term durability. The tailoring of the Fe-N-C aerogel support with hierarchical and interconnecting pores enable a low local oxygen transport resistance (0.18 s cm-1 ) for PEMFCs with ultralow Pt loading (50 ± 5 µgPt cm- 2 ). Chemical confinement of Fe─N sites ensures high stability of the loaded-Pt both in the processes of synthesis up to 1000 °C and practical application in PEMFCs. The ultralow Pt PEMFC displays a low voltage loss of 8 mV at 0.80 A cm- 2 and unchanged electrochemical surface area after 60 000 cycles of accelerated durability testing. The allying of the hierarchical pores, the aerogel, and the single atoms can fully reflect their structural advantages and expand the understanding for the synthesis of advanced fuel cell PEMFCs catalysts.

9.
Nanomaterials (Basel) ; 13(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110890

RESUMEN

Emerging fiber aerogels with excellent mechanical properties are considered as promising thermal insulation materials. However, their applications in extreme environments are hindered by unsatisfactory high-temperature thermal insulation properties resulting from severely increased radiative heat transfer. Here, numerical simulations are innovatively employed for structural design of fiber aerogels, demonstrating that adding SiC opacifiers to directionally arranged ZrO2 fiber aerogels (SZFAs) can substantially reduce high-temperature thermal conductivity. As expected, SZFAs obtained by directional freeze-drying technique demonstrate far superior high-temperature thermal insulation performance over existing ZrO2-based fiber aerogels, with a thermal conductivity of only 0.0663 W·m-1·K-1 at 1000 °C. Furthermore, SZFAs also exhibit excellent comprehensive properties, including ultralow density (6.24-37.25 mg·cm-3), superior elasticity (500 compression cycles at 60% strain) and outstanding heat resistance (up to 1200 °C). The birth of SZFAs provides theoretical guidance and simple construction methods for the fabrication of fiber aerogels with excellent high-temperature thermal insulation properties used for extreme conditions.

10.
Microsyst Nanoeng ; 9: 31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969964

RESUMEN

Polyimides are widely used in the MEMS and flexible electronics fields due to their combined physicochemical properties, including high thermal stability, mechanical strength, and chemical resistance values. In the past decade, rapid progress has been made in the microfabrication of polyimides. However, enabling technologies, such as laser-induced graphene on polyimide, photosensitive polyimide micropatterning, and 3D polyimide microstructure assembly, have not been reviewed from the perspective of polyimide microfabrication. The aims of this review are to systematically discuss polyimide microfabrication techniques, which cover film formation, material conversion, micropatterning, 3D microfabrication, and their applications. With an emphasis on polyimide-based flexible MEMS devices, we discuss the remaining technological challenges in polyimide fabrication and possible technological innovations in this field.

11.
Gels ; 9(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36975663

RESUMEN

Increasing pollution from industrial wastewater containing oils or organic solvents poses a serious threat to both the environment and human health. Compared to complex chemical modifications, bionic aerogels with intrinsic hydrophobic properties exhibit better durability and are considered as ideal adsorbents for oil-water separation. However, the construction of biomimetic three-dimensional (3D) structures by simple methods is still a great challenge. Here, we prepared biomimetic superhydrophobic aerogels with lotus leaf-like structures by growing carbon coatings on Al2O3 nanorod-carbon nanotube hybrid backbones. Thanks to its multicomponent synergy and unique structure, this fascinating aerogel can be directly obtained through a simple conventional sol-gel and carbonization process. The aerogels exhibit excellent oil-water separation (22 g·g-1), recyclability (over 10 cycles) and dye adsorption properties (186.2 mg·g-1 for methylene blue). In addition, benefiting from the conductive porous structure, the aerogels also demonstrate outstanding electromagnetic interference (EMI) shielding capabilities (~40 dB in X-band). This work presents fresh insights for the preparation of multifunctional biomimetic aerogels.

12.
ACS Appl Mater Interfaces ; 15(6): 8546-8554, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36730121

RESUMEN

Flexible pressure sensors have attracted much attention due to their significant potentials in E-skin, artificial intelligence, and medical health monitoring. However, it still remains challenging to achieve high sensitivity and wide sensing range simultaneously, which greatly limit practical applications for flexible sensors. Inspired by the surface stress-induced structure of mimosa, we propose a novel flexible sensor based on the carbon nanotube paper film (CNTF) and stress-induced square frustum structure (SSFS) and demonstrated their excellent sensing performances. Based on interdigital electrodes and uniform CNTF consisting of fibers with large specific surface area, rich conductive paths are formed for enhanced resistance variation. Besides, both experiments and modeling are conducted to verify the synergistic effect of substrates with diverse stiffnesses and SSFS. The SSFS of polydimethylsiloxane transfer small pressure to the CNTF, resulting in sensitive responses with a broad resistance variation. The sensor achieves an ultrahigh sensitivity (2027.5 kPa-1) and a wide pressure range (0.0003-200 kPa). Therefore, it can not only detect human signals such as pulse, vocal cord vibration, wrist flexion, and foot pressure but also be integrated onto car tires to monitor vehicle statuses. These fascinating features endow the sensors with great potentials for future health monitoring, human-computer interaction, and virtual reality.

13.
Soft Robot ; 10(1): 97-105, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35483088

RESUMEN

Harbor seal whiskers possess an undulated surface morphology that can effectively modify the vortex street behind the whiskers and suppress vortex-induced vibrations (VIVs). In this study, we propose a novel piezoresistive flow sensor that mimics the function of seal whiskers. The sensor consists of a bionic whisker with an undulated morphology and integrated out-of-plane piezoresistors. The piezoresistors are formed using a novel directional liquid spreading method to deliver a conductive nanocomposite ink into four Ω-shaped microchannels. Steady flow experiments indicate that the undulated morphology of the artificial whisker significantly reduces the drag forces and VIVs of the whisker at an angle of attack of 0°. Moreover, the whisker sensor can measure the oscillatory flow, which reaches a threshold detection limit of 8 mm/s. In addition, we demonstrate the function of the artificial whisker sensor to distinguish various wakes induced by upstream cylinders. Therefore, the facile fabrication and preliminary experiments of the artificial whisker sensor demonstrate its potential application in diverse flow analyses.

14.
Arch Pharm (Weinheim) ; 355(10): e2200109, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35674481

RESUMEN

A series of novel hybrid compounds between 1,4-benzodioxane and imidazolium salts was designed and prepared. The compounds were evaluated in vitro against a panel of human tumor cell lines (K562, SMMC-7721, and A-549). The structure-activity relationship results demonstrated that the 2-methyl-benzimidazole or 5,6-dimethyl-benzimidazole ring and substitution of the imidazolyl-3-position with a 4-phenylphenacyl substituent were critical for promoting cytotoxic activity. Particularly, compound 25 was found to be the most potent compound with IC50 values of 1.06-8.31 µM against the three human tumor cell lines and exhibited higher selectivity to K562 and SMMC-7721 cells with IC50 values 4.5- and 4.7-fold lower than cisplatin. Moreover, compound 25 inhibited cell proliferation by inducing the G0/G1 cell cycle arrest and apoptosis in SMMC-7721 cells.


Asunto(s)
Antineoplásicos , Sales (Química) , Antineoplásicos/farmacología , Apoptosis , Bencimidazoles , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/farmacología , Sales (Química)/farmacología , Relación Estructura-Actividad
15.
Materials (Basel) ; 15(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35591494

RESUMEN

In order to improve the forming quality of extruded thread, finite element analysis and experimental research are combined to reduce the two keys that affect thread quality in the machining process-extrusion torque and extrusion temperature. The effects of different processing parameters on the extrusion torque and temperature are obtained by numerical simulation, including the bottom hole diameter of the workpiece, the machine tool speed, and the lubrication medium. For the purpose of reducing extrusion torque and temperature, the process parameters for internal thread forming are further optimized by orthogonal design. It is determined that when machining the M22 × 2 internal thread on the connecting rod of the marine diesel engine made of 42CrMo4 steel, the bottom hole diameter of the workpiece should be 21.20 mm, the speed of the machine tool should be 40 RPM, and the lubricating medium should be PDMS polydimethylsiloxane coolant. Compared to before optimization, the maximum extrusion torque and the maximum extrusion temperature are reduced by 19.27% and 15.07%, respectively. On the premise of ensuring the thread connection strength, the height of the thread tooth is reduced by 0.052 mm, and the surface condition of the thread is improved. The surface microhardness at the root, top, and side of the thread increases by about 5 HV0.2, and the depth of the hardened layer increases by 0.05 mm. The results show that the quality of the optimized thread is higher.

16.
RSC Adv ; 12(22): 13783-13791, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35541432

RESUMEN

Carbon aerogels (CAs) have attracted attention in thermal insulation. However, the traditional sol-gel method for preparing them involves time-consuming solvent exchange and rigorous supercritical drying processes, and the obtained CAs are brittle and crumble easily. To address these problems, a carbon fibre-reinforced carbon aerogel (CF/CA) was prepared via combining a resorcinol-furfural (RF) gel containing a salt (ZnCl2) with polyacrylonitrile (PAN) fiber felt. The CF/CA not only has low thermal conductivity (0.6904 W m-1 K-1) even at an ultra-high temperature of 1800 °C in an argon atmosphere but also exhibits relatively high compressive strength (6.10 MPa, 10% ε) and a low density of 0.68 g cm-3. The CF/CAs can be used as ultrahigh-temperature thermal insulators (under inert atmospheres or vacuum) in thermal protection systems such as space vehicles or industrial high temperature furnaces. Our novel strategy may lead to lower-cost and large scale industrial processes of CF/CAs.

17.
Small Methods ; 6(5): e2200045, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35344287

RESUMEN

Ceramic aerogels have great potential in the areas of thermal insulation, catalysis, filtration, environmental remediation, energy storage, etc. However, the conventional shaping and post-processing of ceramic aerogels are plagued by their brittleness due to the inefficient neck connection of oxide ceramic nanoparticles. Here a versatile thermal-solidifying direct-ink-writing has been proposed for fabricating heat-resistant ceramic aerogels. The versatility lies in the good compatibility and designability of ceramic inks, which makes it possible to print silica aerogels, alumina-silica aerogels, and titania-silica aerogels. 3D-printed ceramic aerogels show excellent high-temperature stability up to 1000 °C in air (linear shrinkage less than 5%) when compared to conventional silica aerogels. This improved heat resistance is attributed to the existence of a refractory fumed silica phase, which restrains the microstructure destruction of ceramic aerogels in high-temperature environments. Benefiting from low density (0.21 g cm-3 ), high surface area (284 m2 g-1 ), and well-distributed mesopores, 3D-printed ceramic aerogels possess a low thermal conductivity (30.87 mW m-1 K-1 ) and are considered as ideal thermal insulators. The combination of ceramic aerogels with 3D printing technology would open up new opportunities to tailor the geometry of porous materials for specific applications.

18.
iScience ; 25(1): 103692, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35036876

RESUMEN

Parasitoid wasps of the smallest flying insects with bristled wings exhibit sophisticated flight behaviors while challenging biomechanical limitations in miniaturization and low-speed flow regimes. Here, we investigate the morphology, material composition, and mechanical properties of the bristles of the parasitoid wasps Anagrus Haliday. The bristles are extremely stiff and exhibit a high-aspect-ratio conical tubular structure with a large Young's modulus. This leads to a marginal deflection and uniform structural stress distribution in the bristles while they experience high-frequency flapping-induced aerodynamic loading, indicating that the bristles are robust to fatigue. The flapping aerodynamics of the bristled wings reveal that the wing surfaces act as porous flat paddles to reduce the overall inertial load while utilizing a passive shear-based aerodynamic drag-enhancing mechanism to generate the requisite aerodynamic forces. The bristled wing may have evolved as a novel design that achieves multiple functions and provides innovative ideas for developing bioinspired engineering microdevices.

19.
Front Chem ; 10: 1091566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590282

RESUMEN

Aryl acrylonitriles are an important subclass of acrylonitriles in the medicinal chemistry and pharmaceutical industry. Herein, an efficient synthesis of aryl acrylonitrile derivatives using a Palladium/NIXANTPHOS-based catalyst system was developed. This approach furnishes a variety of substituted and functionalized aryl acrylonitriles (up to 95% yield). The scalability of the transformation and the synthetic versatility of aryl acrylonitrile were demonstrated.

20.
ACS Appl Mater Interfaces ; 13(34): 40964-40975, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424660

RESUMEN

Silica aerogels are attractive materials for various applications due to their exceptional performances and open porous structure. Especially in thermal management, silica aerogels with low thermal conductivity need to be processed into customized structures and shapes for accurate installation on protected parts, which plays an important role in high-efficiency insulation. However, traditional subtractive manufacturing of silica aerogels with complex geometric architectures and high-precision shapes has remained challenging since the intrinsic ceramic brittleness of silica aerogels. Comparatively, additive manufacturing (3D printing) provides an alternative route to obtain custom-designed silica aerogels. Herein, we demonstrate a thermal-solidifying 3D printing strategy to fabricate silica aerogels with complex architectures via directly writing a temperature-induced solidifiable silica ink in an ambient environment. The solidification of silica inks is facilely realized, coupling with the continuous ammonia catalysis by the thermolysis of urea. Based on our proposed thermal-solidifying 3D printing strategy, printed objects show excellent shape retention and have a capacity to subsequently undergo the processes of in situ hydrophobic modification, solvent replacement, and supercritical drying. 3D-printed silica aerogels with hydrophobic modification show a super-high water contact angle of 157°. Benefiting from the low density (0.25 g·cm-3) and mesoporous silica network, optimized 3D-printed specimens with a high specific surface area of 272 m2·g-1 possess a low thermal conductivity of 32.43 mW·m-1·K-1. These outstanding performances of 3D-printed silica aerogels are comparable to those of traditional aerogels. More importantly, the thermal-solidifying 3D printing strategy brings hope to the custom design and industrial production of silica aerogel insulation materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...