Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Virol Methods ; 322: 114822, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37729969

RESUMEN

Porcine astroviruses (PAstV) are members of the family Astroviridae, Mamastravirus genus and have been identified to have five genotypes (PAstV1-5). These viruses are highly prevalent in pigs and can cause enteric disease as well as neurological or respiratory symptoms depending on their genotypes. At present, the epidemiological impacts of some PAstV genotypes on pigs are largely unknown and hence continuously monitoring of these PAstVs may be needed. The purpose of this research was to develop an improved and efficient detection tool for PAstVs and to evaluate the developed method using clinical samples. Initially, a set of five chimeric primers (CP), each comprising genotype specific primer pairs with an identical universal adapter at the 5' end, and a universal primer (UP) that is identical to universal adapter sequence, were designed. With these tools in place, a novel multiplex PCR system with universal primer was established for the simultaneous detection of the five types of PAstV. This method can specifically detect PAstV genotypes, with a limit of detection (LOD) of 5 copies/µL for each genotype irrespective of single or mixed target template. Using this new assay, 273 pig fecal samples were investigated for further assay evaluation. Among all samples, the positive rate was 70.0% with PAstV4 in 56.8% of the samples, PAstV2 in 38.8%, PAstV1 in 16.8%, and PAstV5 in 11.0%. More than one PAstV in a sample were detected in 39.2% of the samples. The consistency rate between the novel multiplex PCR and singleplex PCRs was 96.4-100%. Given its rapidity, specificity and sensitivity, the novel multiplex PCR is a useful approach for demonstrating single or mixed genotype infections of PAstV.


Asunto(s)
Infecciones por Astroviridae , Enfermedades de los Porcinos , Animales , Porcinos , Reacción en Cadena de la Polimerasa Multiplex , Genotipo , Enfermedades de los Porcinos/diagnóstico , Sensibilidad y Especificidad
2.
Mucosal Immunol ; 16(1): 39-49, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642379

RESUMEN

Human breastmilk is rich in T cells; however, their specificity and function are largely unknown. We compared the phenotype, diversity, and antigen specificity of T cells in breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 messenger RNA (mRNA) vaccination. Relative to blood, breastmilk contained higher frequencies of T effector and central memory populations that expressed mucosal-homing markers. T cell receptor sequence overlap was limited between blood and breastmilk. Overabundant breastmilk clones were observed in all individuals, were diverse, and contained complementarity-determining regions in three sequences with known epitope specificity, including to SARS-CoV-2 spike. SARS-CoV-2 spike-specific T cell receptors were more frequent in breastmilk compared to blood and expanded in breastmilk following a 3rd mRNA vaccine dose. Our observations indicate that the lactating breast contains a distinct T cell population that can be modulated by maternal vaccination with potential implications for passive infant protection.


Asunto(s)
COVID-19 , Leche Humana , Lactante , Femenino , Humanos , SARS-CoV-2 , Linfocitos T , Lactancia , Vacunación , ARN Mensajero , Anticuerpos Antivirales
3.
J Vet Diagn Invest ; 35(2): 132-138, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36573660

RESUMEN

Porcine astrovirus (PAstV) has been associated experimentally with diarrhea in piglets, but much more knowledge is needed about this virus. PAstV has high genetic variability, and 5 genotypes have been identified, namely PAstV1-5. To obtain information on the epidemiology of PAstV, we established a multiplex PAstV PCR assay to detect and differentiate the 5 PAstV genotypes simultaneously. The assay utilized specific primers for each genotype, producing fragments of 307, 353, 205, 253, and 467 bp, representing PAstV1-5, respectively. Our multiplex PCR assay amplified all 5 DNA fragments from single or mixed viral genomes without cross-reactions with other PAstV genotypes or other viruses in pigs. The limit of detection of the multiplex PCR assay was 5 × 102 copies/µL for PAstV1 and PAstV4, and 5 × 103 copies/µL for PAstV2, PAstV3, and PAstV5. We examined 76 pig fecal specimens with our multiplex PCR assay. PAstV was detected in 36 of 76 (47.4%) samples; ≥2 PAstVs were found in 20 of 76 (26.3%) samples. The multiplex PCR assay results were essentially the same as the results using a monoplex PAstV PCR assay, with a coincidence rate of >96%. Our multiplex PCR method provides a simple, sensitive, and specific detection tool for PAstV detection and epidemiologic surveys.


Asunto(s)
Infecciones por Astroviridae , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Astroviridae/diagnóstico , Infecciones por Astroviridae/epidemiología , Infecciones por Astroviridae/veterinaria , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología , Genotipo , Sensibilidad y Especificidad
4.
medRxiv ; 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36203549

RESUMEN

Human breastmilk is rich in T cells; however, their specificity and function are largely unknown. We compared the phenotype, diversity, and antigen specificity of T cells in the breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 mRNA vaccination. Relative to blood, breastmilk contained higher frequencies of T effector and central memory populations that expressed mucosal-homing markers. T cell receptor (TCR) sequence overlap was limited between blood and breastmilk. Overabundan t breastmilk clones were observed in all individuals, were diverse, and contained CDR3 sequences with known epitope specificity including to SARS-CoV-2 Spike. Spike-specific TCRs were more frequent in breastmilk compared to blood and expanded in breastmilk following a third mRNA vaccine dose. Our observations indicate that the lactating breast contains a distinct T cell population that can be modulated by maternal vaccination with potential implications for infant passive protection. One-Sentence Summary: The breastmilk T cell repertoire is distinct and enriched for SARS-CoV-2 Spike-specificity after maternal mRNA vaccination.

5.
Microbiol Spectr ; 10(6): e0169522, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36226962

RESUMEN

Biomedical personnel can become contaminated with nonhazardous reagents used in the laboratory. We describe molecular studies performed on nasal secretions collected longitudinally from asymptomatic laboratory coworkers to determine if they were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) circulating in the community or with SARS-CoV-2 DNA from a plasmid vector. Participants enrolled in a prospective study of incident SARS-CoV-2 infection had nasal swabs collected aseptically by study staff at enrollment, followed by weekly self-collection of anterior nasal swabs. SARS-CoV-2 diagnosis was performed by a real-time PCR test targeting the nucleocapsid gene. PCR tests targeting SARS-CoV-2 nonstructural protein 10 (nsp10), nsp14, and envelope and three regions of the plasmid vector were performed to differentiate amplification of SARS-CoV-2 RNA from the plasmid vector's DNA. Nasal swabs from four asymptomatic coworkers with positive real-time PCR results for the SARS-CoV-2 nucleocapsid targets were negative when tested for SARS-CoV-2 nsp10, nsp14, and envelope protein. However, nucleic acids extracted from these nasal swabs amplified DNA regions of the plasmid vector used by the coworkers, including the ampicillin and neomycin/kanamycin resistance genes, the promoter-nucleocapsid junction, and unique codon-optimized regions. Nasal swabs from these individuals tested positive repeatedly, including during isolation. Longitudinal detection of plasmid DNA with SARS-CoV-2 nucleocapsid in nasal swabs suggests persistence in nasal tissues or colonizing bacteria. Nonviral plasmid vectors, while regarded as safe laboratory reagents, can interfere with molecular diagnostic tests. These reagents should be handled using proper personal protective equipment to prevent contamination of samples or laboratory personnel. IMPORTANCE Asymptomatic laboratory workers who tested positive for SARS-CoV-2 for days to months were found to harbor a laboratory plasmid vector containing SARS-CoV-2 DNA, which they had worked with in the past, in their nasal secretions. While prior studies have documented contamination of research personnel with PCR amplicons, our observation is novel, as these individuals shed the laboratory plasmid over days to months, including during isolation in their homes. This suggests that the plasmid was in their nasal tissues or that bacteria containing the plasmid had colonized their noses. While plasmids are generally safe, our detection of plasmid DNA in the nasal secretions of laboratory workers for weeks after they had stopped working with the plasmid shows the potential for these reagents to interfere with clinical tests and emphasizes that occupational exposures in the preceding months should be considered when interpreting diagnostic clinical tests.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , ARN Viral/genética , Estudios Prospectivos
6.
PLoS One ; 17(9): e0274078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36155639

RESUMEN

BACKGROUND: Asymptomatic and pre-symptomatic SARS-CoV-2 infections may contribute to ongoing community transmission, however, the benefit of routine screening of asymptomatic individuals in low-risk populations is unclear. METHODS: To identify SARS-CoV-2 infections 553 seronegative individuals were prospectively followed for 52 weeks. From 4/2020-7/2021, participants submitted weekly self-collected nasal swabs for rtPCR and completed symptom and exposure surveys. RESULTS: Incident SARS2-CoV-2 infections were identified in 9/553 (1.6%) participants. Comparisons of SARS2-CoV-2(+) to SARS2-CoV-2(-) participants revealed significantly more close contacts outside the household (median: 5 versus 3; p = 0.005). The incidence of infection was higher among unvaccinated/partially vaccinated than among fully vaccinated participants (9/7,679 versus 0/6,845 person-weeks; p = 0.004). At notification of positive test result, eight cases were symptomatic and one pre-symptomatic. CONCLUSIONS: These data suggest that weekly SARS2-CoV2 surveillance by rtPCR did not efficiently detect pre-symptomatic infections in unvaccinated participants.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Estudios de Cohortes , Humanos , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , SARS-CoV-2/genética
7.
PLoS One ; 16(11): e0259902, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34788328

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with endothelial activation and coagulopathy, which may be related to pre-existing or infection-induced pro-thrombotic autoantibodies such as those targeting angiotensin II type I receptor (AT1R-Ab). METHODS: We compared prevalence and levels of AT1R-Ab in COVID-19 cases with mild or severe disease to age and sex matched negative controls utilizing multivariate logistic and quantile regression adjusted for comorbidities including hypertension, diabetes, and heart disease. RESULTS: There were trends toward increased prevalence (50% vs. 33%, p = 0.1) and level of AT1R-Ab (median 9.8 vs. 6.1 U/mL, p = 0.06) in all cases versus controls. When considered by COVID-19 disease severity, there was a trend toward increased prevalence of AT1R-Ab (55% vs. 31%, p = 0.07), as well as significantly higher AT1R-Ab levels (median 10.7 vs. 5.9 U/mL, p = 0.03) amongst individuals with mild COVID-19 versus matched controls. In contrast, the prevalence (42% vs. 37%, p = 0.9) and level (both medians 6.7 U/mL, p = 0.9) of AT1R-Ab amongst those with severe COVID-19 did not differ from matched controls. CONCLUSIONS: These findings support an association between COVID-19 and AT1R-Ab, emphasizing that vascular pathology may be present in individuals with mild COVID-19 as well as those with severe disease.


Asunto(s)
COVID-19 , Adulto , Rechazo de Injerto , Humanos , Trasplante de Riñón , Masculino , Persona de Mediana Edad , Receptor de Angiotensina Tipo 1
8.
Mol Cell Probes ; 58: 101747, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34116142

RESUMEN

Viral pathogens associated with diarrhea in pigs include porcine circovirus 2 (PCV2), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus A (RVA) and C (RVC) among others. In this study, a novel universal primer-based pentaplex PCR (UP-M-PCR) assay was developed for simultaneous detection and differentiation of these five viruses. The assay uses a short-cycle multiplex amplification by chimeric primers (CP), which are virus specific, with a tail added at the 5' end of the universal primer (UP), followed by universal amplification using UPs and a regular cycle amplification. Five universal primers with CPs (UP1-5) were designed and evaluated in an UP-based single PCR (UP-S-PCR). All five UPs were found to work efficiently and UP2 exhibited the best performance. After system optimizations, the analytical sensitivity of the UP-M-PCR, using plasmids containing the specific viral target fragments, was 5 copies/reaction for each of the five viruses irrespective of presence of a single or multiple viruses in the reaction. No cross-reaction was observed with other non-target viruses. When 273 fecal samples from clinically healthy pigs were tested, the assay sensitivity was 90.9-100%, the specificity was 98.0-100%, and the agreement rate with the UP-S-PCR was 98.5-99.6% with a Kappa value being 0.95-0.98. In summary, the UP-M-PCR developed here is a rapid and highly sensitive and specific detection method that can be used to demonstrate mixed infections in pigs with diarrhea.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Virus , Animales , Diarrea/veterinaria , Reacción en Cadena de la Polimerasa , Virus de la Diarrea Epidémica Porcina/genética , Sensibilidad y Especificidad , Porcinos , Enfermedades de los Porcinos/diagnóstico
9.
Cell Rep Med ; 2(4): 100253, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33842901

RESUMEN

The fate of protective immunity following mild severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection remains ill defined. Here, we characterize antibody responses in a cohort of participants recovered from mild SARS-CoV-2 infection with follow-up to 6 months. We measure immunoglobulin A (IgA), IgM, and IgG binding and avidity to viral antigens and assess neutralizing antibody responses over time. Furthermore, we correlate the effect of fever, gender, age, and time since symptom onset with antibody responses. We observe that total anti-S trimer, anti-receptor-binding domain (RBD), and anti-nucleocapsid protein (NP) IgG are relatively stable over 6 months of follow-up, that anti-S and anti-RBD avidity increases over time, and that fever is associated with higher levels of antibodies. However, neutralizing antibody responses rapidly decay and are strongly associated with declines in IgM levels. Thus, while total antibody against SARS-CoV-2 may persist, functional antibody, particularly IgM, is rapidly lost. These observations have implications for the duration of protective immunity following mild SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , COVID-19/inmunología , Inmunoglobulina M/metabolismo , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , COVID-19/complicaciones , COVID-19/patología , COVID-19/virología , Femenino , Fiebre/etiología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Proteínas de la Nucleocápside/inmunología , Dominios Proteicos/inmunología , Multimerización de Proteína/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Adulto Joven
10.
J Infect Dis ; 222(12): 1965-1973, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32798222

RESUMEN

We present a microsphere-based flow cytometry assay that quantifies the ability of plasma to inhibit the binding of spike protein to angiotensin-converting enzyme 2. Plasma from 22 patients who had recovered from mild coronavirus disease 2019 (COVID-19) and expressed anti-spike protein trimer immunoglobulin G inhibited angiotensin-converting enzyme 2-spike protein binding to a greater degree than controls. The degree of inhibition was correlated with anti-spike protein immunoglobulin G levels, neutralizing titers in a pseudotyped lentiviral assay, and the presence of fever during illness. This inhibition assay may be broadly useful to quantify the functional antibody response of patients recovered from COVID-19 or vaccine recipients in a cell-free assay system.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Sitios de Unión , Femenino , Células HEK293 , Humanos , Masculino , Microesferas , Persona de Mediana Edad , Plasma/inmunología , Unión Proteica , SARS-CoV-2/inmunología , Adulto Joven
11.
medRxiv ; 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32577669

RESUMEN

High throughput serological tests that can establish the presence and functional activity of anti-SARS-COV2 antibodies are urgently needed. Here we present microsphere-based Flow Cytometry assays that quantify both anti-spike IgGs in plasma, and the ability of plasma to inhibit the binding of spike protein to angiotensin converting enzyme 2 (ACE2). First, we detected anti-trimer IgGs in 22/24 and anti-RBD IgGs in 21/24 COVID+ subjects at a median of 36 (range 14-73) days following documented SARS-CoV-2 RNA (+) secretions. Next, we find that plasma from all 22/24 subjects with anti-trimer IgGs inhibited ACE2-trimer binding to a greater degree than controls, and that the degree of inhibition correlated with anti-trimer IgG levels. Depletion of trimer-reactive Igs from plasma reduced ACE2-trimer inhibitory capacity to a greater degree than depletion of RBD-reactive Igs, suggesting that inhibitory antibodies act by binding both within and outside of the RBD. Amongst the 24 subjects, presence of fever was associated with higher levels of anti-trimer IgG and inhibition of binding to human ACE2. This inhibition assay may be broadly useful to quantify the functional antibody response of recovered COVID19 patients or vaccine recipients in a cell-free assay system.

12.
Sci Adv ; 5(3): eaav6322, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944862

RESUMEN

A proposed strategy to cure HIV uses latency-reversing agents (LRAs) to reactivate latent proviruses for purging HIV reservoirs. A variety of LRAs have been identified, but none has yet proven effective in reducing the reservoir size in vivo. Nanocarriers could address some major challenges by improving drug solubility and safety, providing sustained drug release, and simultaneously delivering multiple drugs to target tissues and cells. Here, we formulated hybrid nanocarriers that incorporate physicochemically diverse LRAs and target lymphatic CD4+ T cells. We identified one LRA combination that displayed synergistic latency reversal and low cytotoxicity in a cell model of HIV and in CD4+ T cells from virologically suppressed patients. Furthermore, our targeted nanocarriers selectively activated CD4+ T cells in nonhuman primate peripheral blood mononuclear cells as well as in murine lymph nodes, and substantially reduced local toxicity. This nanocarrier platform may enable new solutions for delivering anti-HIV agents for an HIV cure.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Linfocitos T CD4-Positivos/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Nanoestructuras/administración & dosificación , Latencia del Virus/efectos de los fármacos , Animales , Fármacos Anti-VIH/química , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Fenómenos Químicos , Portadores de Fármacos/química , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/fisiología , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Macaca , Ratones Endogámicos C57BL , Nanoestructuras/química , Latencia del Virus/inmunología
13.
J Virol Methods ; 268: 1-8, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30844408

RESUMEN

In recent years, a series of porcine diarrhea viruses such as porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotaviruses of group A (RVA), rotaviruses of group C (RVC), and porcine circovirus 2 (PCV2) caused enormous economic losses all over the world. While any of these viruses is capable to cause disease alone, there is often concurrent infection with more than one virus on pig farms. In this study, a multiplex real-time PCR method based on EvaGreen fluorescent dye and melting curve analysis was established to simultaneously detect these five viruses in a single closed tube. Five distinct melt peaks were obtained with different melting temperature (Tm) value corresponding to each of the five viruses. This method was highly sensitive to detect and distinguish TGEV, RVA, RVC, PEDV and PCV2 with the limits of detection ranging from 5 to 50 copies/µL. The intra-assay and inter-assay reproducibility were good with coefficient of variation of Tm and cycle threshold values less than 0.32% and 2.86%, respectively. Testing of 90 field samples by the single and multiplex real-time PCR assays demonstrated a concordance of 91.1%. Thus, the EvaGreen multiplex real-time PCR is a rapid, sensitive and low-cost diagnostic tool for differential detection and routine surveillance of TGEV, RVA, RVC, PEDV and PCV2 in pigs.


Asunto(s)
Tracto Gastrointestinal/virología , Reacción en Cadena de la Polimerasa Multiplex , Enfermedades de los Porcinos/virología , Temperatura de Transición , Virosis/veterinaria , Virus/aislamiento & purificación , Animales , Cartilla de ADN/genética , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Porcinos , Enfermedades de los Porcinos/diagnóstico , Virosis/diagnóstico , Virus/clasificación
14.
J Virol Methods ; 263: 32-37, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336161

RESUMEN

Porcine viral diarrhea, mainly caused by porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine group A rotaviruses (RVA), porcine group C rotaviruses (RVC) and porcine circovirus 2 (PCV2), is a serious global problem, resulting in substantial economic losses to the swine industry. For fast and reliable diagnosis of the causative agent associated with viral diarrhea in pigs, an inexpensive and easy to perform gel-based multiplex PCR assay was developed in this study to detect and differentiate the different viruses by amplicon size. The assay was able to distinguish between all five viral agents without cross-reacting with other non-target pig viruses. The detection limits of the assay per reaction were 5 copies for PEDV, TGEV, RVC and PCV2 and 50 copies for RVA for the singleplex assays and 50 copies when all five viruses were multiplexed. Sixty-nine field samples were used to validate the developed multiplex assay. The overall prevalence of positive samples was 44.9% (31/69). PCV2 was detected in 37.7% of the samples, PEDV and RVC each in 4.3%, TGEV in 2.9%, and RVA was detected in 1.4% of the samples tested. A total of 5.8% of the samples were co-infected by two or more viruses, and the results of the multiplex assay were in agreement to those obtained by single PCR assays. These findings suggest that the developed cost-effective multiplex assay is specific, sensitive, and will serve as a valuable diagnostic tool for the rapid differential detection of these five viruses and for molecular epidemiological studies and diarrhea disease management.


Asunto(s)
Diarrea/veterinaria , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de los Porcinos/diagnóstico , Virosis/veterinaria , Animales , Circovirus/aislamiento & purificación , Diarrea/diagnóstico , Heces/virología , Genes Virales/genética , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , ARN Viral/genética , Rotavirus/aislamiento & purificación , Sensibilidad y Especificidad , Porcinos , Virus de la Gastroenteritis Transmisible/aislamiento & purificación , Virosis/diagnóstico
15.
ACS Biomater Sci Eng ; 5(8): 4013-4022, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-33117884

RESUMEN

Polymeric nanocarriers have been extensively used to improve the delivery of hydrophobic drugs, but often provide low encapsulation efficiency and percent loading for hydrophilic compounds. In particular, insufficient loading of hydrophilic antiretroviral drugs such as the integrase inhibitor raltegravir (RAL) has limited the development of sustained-release therapeutics or prevention strategies against HIV. To address this, we developed a generalizable prodrug strategy using RAL as a model where loading, release and subsequent hydrolysis can be tuned by promoiety selection. Prodrugs with large partition coefficients increased the encapsulation efficiency up to 25-fold relative to RAL, leading to significant dose reductions in antiviral activity assays. The differential hydrolysis rates of these prodrugs led to distinct patterns of RAL availability and observed antiviral activity. We also developed a method to monitor the temporal distribution of both prodrug and RAL in cells treated with free prodrug or prodrug-NPs. Results of these studies indicated that prodrug-NPs create an intracellular drug reservoir capable of sustained intracellular drug release. Overall, our results suggest that the design of prodrugs for specific polymeric nanocarrier systems could provide a more generalized strategy to formulate physicochemically diverse hydrophilic drugs with a number of biomedical applications.

16.
Nanomedicine ; 14(7): 2143-2153, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29964219

RESUMEN

A major sanctuary site for HIV infection is the gut-associated lymphoid tissue (GALT). The α4ß7 integrin gut homing receptor is a promising therapeutic target for the virus reservoir because it leads to migration of infected cells to the GALT and facilitates HIV infection. Here, we developed a core-shell nanoparticle incorporating the α4ß7 monoclonal antibody (mAb) as a dual-functional ligand for selectively targeting a protease inhibitor (PI) to gut-homing T cells in the GALT while simultaneously blocking HIV infection. Our nanoparticles significantly reduced cytotoxicity of the PI and enhanced its in vitro antiviral activity in combination with α4ß7 mAb. We demonstrate targeting function of our nanocarriers in a human T cell line and primary cells isolated from macaque ileum, and observed higher in vivo biodistribution to the murine small intestines where they accumulate in α4ß7+ cells. Our LCNP shows the potential to co-deliver ARVs and mAbs for eradicating HIV reservoirs.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Integrinas/inmunología , Intestino Delgado/efectos de los fármacos , Nanopartículas/administración & dosificación , Inhibidores de Proteasas/química , Linfocitos T/efectos de los fármacos , Animales , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/inmunología , Humanos , Íleon/efectos de los fármacos , Íleon/inmunología , Íleon/virología , Intestino Delgado/inmunología , Intestino Delgado/virología , Macaca mulatta , Ratones , Nanopartículas/química , Piridinas/administración & dosificación , Piridinas/química , Piridinas/farmacología , Pironas/administración & dosificación , Pironas/química , Pironas/farmacología , Sulfonamidas , Linfocitos T/inmunología , Linfocitos T/virología
17.
J Biomed Mater Res A ; 106(5): 1177-1188, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29271128

RESUMEN

Monoclonal antibodies and peptides are conjugated to the surface of nanocarriers (NCs) for targeting purposes in numerous applications. However, targeting efficacy may vary with their specificity, affinity, or avidity when linked to NCs. The physicochemical properties of NCs may also affect targeting. We compared the targeting efficacy of the CD4 binding peptide BP4 and an anti-CD4 monoclonal antibody (CD4 mAb) and its fragments, when conjugated to lipid-coated poly(lactic-co-glycolic) acid nanoparticles (LCNPs). Negatively charged LCNPs with cholesteryl butyrate in the lipid layer (cbLCNPs) dramatically reduced nonspecific binding, leading to higher targeting specificity, compared to neutral or positively charged LCNPs with DOTAP (dtLCNP). cbLCNPs surface conjugated with a CD4 antibody (CD4-cbLCNPs) or its fragments (fCD4-cbLCNPs), but not BP4, showed high binding in vitro to the human T cell line 174xCEM, and preferential binding to CD3+ CD14-CD8- cells from pigtail macaque peripheral blood mononuclear cells. CD4-cbLCNPs showed 10-fold higher binding specificity for CD4+ than CD8+ T cells, while fCD4-cbLCNPs demonstrated the highest binding level overall, but only three-fold higher binding specificity. This study demonstrates the importance of ζ-potential on NC targeting and indicates that CD4 mAb and its fragments are the best candidates for delivery of therapeutic agents to CD4+ T cells. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1177-1188, 2018.


Asunto(s)
Antígenos CD4/metabolismo , Lípidos/química , Nanopartículas/química , Polímeros/química , Animales , Línea Celular , Humanos , Leucocitos Mononucleares/metabolismo , Ligandos , Macaca , Tamaño de la Partícula , Péptidos/metabolismo
18.
Drug Deliv Transl Res ; 7(6): 796-804, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28497376

RESUMEN

Here, we present the current challenges in women's reproductive health and the current state-of-the-art treatment and prevention options for STI prevention, contraception, and treatment of infections. We discuss how the versatile platform of electrospun fibers can be applied to each challenge, and postulate at how these technologies could be improved. The void of approved electrospun fiber-based products yields the potential to apply this useful technology to a number of medical applications, many of which are relevant to women's reproductive health. Given the ability to tune drug delivery characteristics and three-dimensional geometry, there are many opportunities to pursue new product designs and routes of administration for electrospun fibers. For each application, we provide an overview of the versatility of electrospun fibers as a novel dosage form and summarize their advantages in clinical applications. We also provide a perspective on why electrospun fibers are well-suited for a variety of applications within women's reproductive health and identify areas that could greatly benefit from innovations with electrospun fiber-based approaches.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Enfermedades de Transmisión Sexual/tratamiento farmacológico , Enfermedades de Transmisión Sexual/prevención & control , Anticoncepción/métodos , Femenino , Humanos , Salud Reproductiva , Ingeniería de Tejidos , Salud de la Mujer
19.
Acta Biomater ; 55: 183-193, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28365480

RESUMEN

Self-assembling peptides programed by sequence design to form predefined nanostructures are useful for a variety of biomedical applications. However, assemblies of classic ionic self-complementary peptides are unstable in neutral pH, while charged peptide hydrogels have low mechanical strength. Here, we report on the rational design of a self-assembling peptide system with optimized charge distribution and density for bioscaffold development. Our designer peptides employs a sequence pattern that undergoes salt triggered self-assembly into ß-sheet rich cationic nanofibers in the full pH range (pH 0-14). Our peptides form nanofibrils in physiological condition at a minimum concentration that is significantly lower than has been reported for self-assembly of comparable peptides. The robust fiber-forming ability of our peptides results in the rapid formation of hydrogels in physiological conditions with strong mechanical strength. Moreover, fiber structure is maintained even upon dense conjugation with a model bioactive cargo OVA257-264 peptide. Nanofibers carrying OVA257-264 significantly enhanced CD8+ T cell activation in vitro. Subcutaneous immunization of our peptide fiber vaccine also elicited robust CD8+ T cell activation and proliferation in vivo. Our self-assembling peptides are expected to provide a versatile platform to construct diverse biomaterials. STATEMENT OF SIGNIFICANCE: This work is an attempt of rational design of materials from molecular level for targeted properties and an exploration in molecular self-assembly. Current widely studied self-assembling peptides do not have stable nanofiber structures and form weak hydrogels under physiological conditions. To address this issue, we develop charged self-assembling peptides with a novel sequence pattern for strong fiber-forming ability under physiological conditions. Our designer peptides can undergo salt-triggered self-assembly into nanofibers that are ultrastable in extreme pH (0-14) and dilute solutions, and into hydrogels with strong mechanical strength. Upon conjugation with a model bioactive cargo, our self-assembled peptides exhibit great potential as bioscaffolds for multiple applications.


Asunto(s)
Hidrogeles/química , Nanofibras/química , Péptidos/química , Andamios del Tejido/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...