Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8008): 527-533, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600389

RESUMEN

Topology1-3 and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three important research directions: (1) the competition between distinct interactions, as in several intertwined phases, (2) the interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and (3) the coalescence of several topological orders to generate distinct novel phases. The first two examples have grown into major areas of research, although the last example remains mostly unexplored, mainly because of the lack of a material platform for experimental studies. Here, using tunnelling microscopy, photoemission spectroscopy and a theoretical analysis, we unveil a 'hybrid' topological phase of matter in the simple elemental-solid arsenic. Through a unique bulk-surface-edge correspondence, we uncover that arsenic features a conjoined strong and higher-order topology that stabilizes a hybrid topological phase. Although momentum-space spectroscopy measurements show signs of topological surface states, real-space microscopy measurements unravel a unique geometry of topologically induced step-edge conduction channels revealed on various natural nanostructures on the surface. Using theoretical models, we show that the existence of gapless step-edge states in arsenic relies on the simultaneous presence of both a non-trivial strong Z2 invariant and a non-trivial higher-order topological invariant, which provide experimental evidence for hybrid topology. Our study highlights pathways for exploring the interplay of different band topologies and harnessing the associated topological conduction channels in engineered quantum or nano-devices.

2.
Adv Mater ; 35(3): e2205927, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36385535

RESUMEN

Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena, in which the delicate interplay between frustrated crystal structure, magnetization, and spin-orbit coupling (SOC) can engender highly tunable topological states. Here, utilizing angle-resolved photoemission spectroscopy, the Weyl lines are directly visualized with strong out-of-plane dispersion in the A-A stacked kagome magnet GdMn6 Sn6 . Remarkably, the Weyl lines exhibit a strong magnetization-direction-tunable SOC gap and binding energy tunability after substituting Gd with Tb and Li, respectively. These results not only illustrate the magnetization direction and valence counting as efficient tuning knobs for realizing and controlling distinct 3D topological phases, but also demonstrate AMn6 Sn6 (A = rare earth, or Li, Mg, or Ca) as a versatile material family for exploring diverse emergent topological quantum responses.

3.
Phys Rev Lett ; 129(16): 166401, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36306757

RESUMEN

Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifies a 2×2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin mapping across steps of unit cell height demonstrates the existence of spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape fluctuations of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including unconventional magnetism and bulk-boundary correspondence.

4.
Nat Commun ; 13(1): 6348, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289236

RESUMEN

The electronic instabilities in CsV3Sb5 are believed to originate from the V 3d-electrons on the kagome plane, however the role of Sb 5p-electrons for 3-dimensional orders is largely unexplored. Here, using resonant tender X-ray scattering and high-pressure X-ray scattering, we report a rare realization of conjoined charge density waves (CDWs) in CsV3Sb5, where a 2 × 2 × 1 CDW in the kagome sublattice and a Sb 5p-electron assisted 2 × 2 × 2 CDW coexist. At ambient pressure, we discover a resonant enhancement on Sb L1-edge (2s→5p) at the 2 × 2 × 2 CDW wavevectors. The resonance, however, is absent at the 2 × 2 × 1 CDW wavevectors. Applying hydrostatic pressure, CDW transition temperatures are separated, where the 2 × 2 × 2 CDW emerges 4 K above the 2 × 2 × 1 CDW at 1 GPa. These observations demonstrate that symmetry-breaking phases in CsV3Sb5 go beyond the minimal framework of kagome electronic bands near van Hove filling.

5.
Nature ; 609(7927): 490-495, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104552

RESUMEN

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies1,2. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity1,2. Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons3,4, non-trivial topology5-7, chiral magnetic order8,9, superconductivity and CDW order10-15. Although CDW has been found in weakly electron-correlated non-magnetic AV3Sb5 (A = K, Rb, Cs)10-15, it has not yet been observed in correlated magnetic-ordered kagome lattice metals4,16-21. Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs. 16-19). The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5 (refs. 10-15), enhances the AFM ordered moment and induces an emergent anomalous Hall effect22,23. Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase24-28, in stark contrast to strongly correlated copper oxides1,2 and nickelates29-31, in which the CDW precedes or accompanies the magnetic order.

6.
Nat Mater ; 21(10): 1111-1115, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35835819

RESUMEN

Room-temperature realization of macroscopic quantum phases is one of the major pursuits in fundamental physics1,2. The quantum spin Hall phase3-6 is a topological quantum phase that features a two-dimensional insulating bulk and a helical edge state. Here we use vector magnetic field and variable temperature based scanning tunnelling microscopy to provide micro-spectroscopic evidence for a room-temperature quantum spin Hall edge state on the surface of the higher-order topological insulator Bi4Br4. We find that the atomically resolved lattice exhibits a large insulating gap of over 200 meV, and an atomically sharp monolayer step edge hosts an in-gap gapless state, suggesting topological bulk-boundary correspondence. An external magnetic field can gap the edge state, consistent with the time-reversal symmetry protection inherent in the underlying band topology. We further identify the geometrical hybridization of such edge states, which not only supports the Z2 topology of the quantum spin Hall state but also visualizes the building blocks of the higher-order topological insulator phase. Our results further encourage the exploration of high-temperature transport quantization of the putative topological phase reported here.

7.
Nat Mater ; 20(10): 1353-1357, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34112979

RESUMEN

Intertwining quantum order and non-trivial topology is at the frontier of condensed matter physics1-4. A charge-density-wave-like order with orbital currents has been proposed for achieving the quantum anomalous Hall effect5,6 in topological materials and for the hidden phase in cuprate high-temperature superconductors7,8. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy to discover an unconventional chiral charge order in a kagome material, KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2 × 2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2 × 2 charge modulation exhibits an intensity reversal in real space, signalling charge ordering. At the impurity-pinning-free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral charge density wave in the frustrated kagome lattice, which can not only lead to a large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.

8.
J Zhejiang Univ Sci B ; 15(2): 181-93, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24510711

RESUMEN

Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important seed oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increased α-, γ-, and total Toc (T-Toc) more than did ammonium nitrate. N3 was proven as the most efficient application rate, which yielded high contents of γ-Toc and T-Toc. Highly significant correlations were observed between Toc isomers, T-Toc, and α-/γ-Toc ratio. These results clearly demonstrate that N sources and application rates significantly affect seed Toc contents in oilseed rape.


Asunto(s)
Brassica napus/metabolismo , Fertilizantes/análisis , Nitrógeno/química , Semillas/metabolismo , Tocoferoles/química , Biomasa , Genotipo , Nitratos/química , Especies Reactivas de Oxígeno , Suelo , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...